
VOLUMETRIC RENDERING OF PARTICLE

SYSTEMS USING INTERVAL SHADING

A dissertation submitted for the degree of MSc. Computer

Games Technology

by

Sandilya Yasodhar Jandhyala

School of Design, Informatics and Business,

Abertay University.

August, 2025

1

Acknowledgements

Thanks to Erin Hughes and Ruth Falconer for their review of this document and their

guidance throughout the production of this artefact.

Thanks to Jamie Buttenshaw for his guidance in the area of volumetric rendering

methods and particularly the mathematical modelling involved.

Thanks to Thomas Howson for his review of the mathematical arguments presented.

Finally, we would like to thank Lucas Chatwin, Morgan Skillicorn, Maja Oszczypała,

James Marsh, Timon Holzer and Aria Dzhumaliyski for their unwavering support.

2

“The lyf so short, the craft so long to lerne.”
Geoffrey Chaucer, The Parliament of Birds

3

Abstract

Participating media such as smoke, clouds and fog are common elements of modern

real-time graphics applications such as games. Traditional methods of participating

media rendering include ray-marching density fields or various forms of voxel-based

integration. While these methods produce visually plausible results in many cases,

they may suffer from aliasing artefacts or temporal ghosting when the media is

animated or high-frequency lights or shadows are introduced.

This project introduces a novel volumetric particle rendering method based on a

recently published technique that uses tetrahedrons as primitives for real-time

volume rendering. This method was evaluated using a qualitative assessment of the

visuals as well as a quantitative analysis of its performance against various

parameters. The method was found to support most characteristics required for

plausible rendering of participating media, and is capable of running comfortably at

real-time frame rates. Furthermore, the media can be animated and supports high-

frequency light animation and shadows without any temporal ghosting or other

objectionable artefacts.

There are opportunities for further work to improve performance of this method,

improve visual fidelity, incorporate into a unified volumetric rendering system and to

extend this method beyond particles to render tetrahedral meshes.

4

Table of Contents

Acknowledgements .. 1

Abstract .. 3

List of Figures ... 7

List of Equations ... 9

1 Introduction ..10

1.1 Context ...10

1.2 Research question ..11

1.3 Aim ..11

2 Background ..12

2.1 Physically based light scattering theory12

2.2 Prior work and motivation..14

2.3 The Interval Shading method ..16

2.3.1 Overview ..16

2.3.2 Generating depth intervals for a prismoid17

2.3.3 Extension to tetrahedrons ..18

2.3.4 Clipping of tetrahedrons ...20

3 Methodology ..21

3.1 The physically based rendering equation21

3.2 Using blending to solve the rendering equation21

3.3 Choice of phase function ..23

3.4 Computing optical thickness and transmittance along the light ray using a

volumetric shadow map ...24

3.5 Implementation of interval shading ...26

3.6 Algorithm to solve the physically based rendering equation......26

3.7 Analytical solution assuming constant extinction27

3.8 Hiding of tetrahedron edges ..28

3.9 Integrating 𝑪𝒔𝒄𝒂𝒕 using a Taylor series expansion29

3.10 Integrating 𝑪𝒔𝒄𝒂𝒕 using Simpson’s rule31

5

3.11 Early return for invisible pixels ..32

3.12 Multiple scattering approximation ..33

3.13 Volumetric shadows on opaque objects33

3.14 Animation of the medium ..33

3.15 Occlusion of the medium...34

3.16 Parameterisation ...34

3.17 Testing and validation ...35

4 Results ...37

4.1 Qualitative analysis of the visuals ...37

4.1.1 Scattering of light towards the camera37

4.1.2 Self-shadowing of the medium ...38

4.1.3 Volumetric shadows cast by opaque objects38

4.1.4 Volumetric shadows cast onto opaque objects40

4.1.5 Anisotropic scattering of light ...42

4.1.6 Maintenance of visual fidelity under motion42

4.2 Quality settings and performance ...42

4.2.1 Simpson’s rule steps ..43

4.2.2 Screen resolution ...44

4.2.3 Particle count and camera distance44

4.2.4 Particle size ...46

4.2.5 Large kernel PCF ...46

4.2.6 Extinction fading ..47

4.2.7 Shadow map depth slices ..48

4.2.8 Shadow map resolution ...51

5 Discussion ..53

5.1 Visual Fidelity ..53

5.2 Performance ...54

6 Conclusion and Future Work ..55

6

6.1 Conclusion ..55

6.2 Future Work ..55

7 List of References ..58

7

List of Figures

Figure 1: Examples of participating media in games. Left: Volumetric fog in the

Unreal Engine (Epic Games, no date). Right: Clouds in the Decima Engine

(Schneider, 2023) ..10

Figure 2: The components of the volumetric rendering equation13

Figure 3: The frustum-aligned volumes used by the Frostbite engine (Hillaire, 2015)

 ..15

Figure 4: A triangular prismoid. Left: in projected space. Right: in world space

(Tricard, 2024) ...17

Figure 5: Two possible prismoid decomposition cases for a tetrahedron. Left:

Wireframe of the tetrahedron. Right: Proxy generated by the mesh shader with

vertex indices labelled. Top: Case 1, three triangles are created. Bottom: Case 2,

four triangles are created. ...18

Figure 6: Integrating the rendering equation using blending22

Figure 7: Volumetric shadow map for a cloud of tetrahedrons25

Figure 8: The results of the analytical shading method with constant extinction 27

Figure 9: Constant extinction within a tetrahedron causes edges to be visible 28

Figure 10: Extinction fading ...29

Figure 11: Taylor series integration results in firefly artefacts31

Figure 12: The Simpson’s rule method avoids objectionable artefacts ...32

Figure 13: Wasted pixels visualised for a single particle with u=1.6. Visible pixels are

shaded in green, while pixels with extinction below the cutoff are shaded red 32

Figure 14: Available parameters ...34

Figure 15: The colour of the participating medium is affected by the colour of incident

light ..37

Figure 16: The colour of the participating medium is affected by its own albedo 38

Figure 17: The medium shadows itself, resulting in the bottom right portion appearing

dark ...38

Figure 18: The cube and the sphere both occlude light, casting volumetric shadows

into the participating medium ..39

Figure 19: Left: 100 particles, size 6, 1 step. Centre: 100 particles, size 6, 10 steps.

Right: 5000 particles, size 6, 1 step...39

8

Figure 20: Left: A shadow cast onto a high extinction medium. Centre: When a

shadow is cast onto a low extinction medium, it looks like a hole. Right: Hole-like

shadows viewed from the other side of the medium40

Figure 21: Multiple scattering (right) can improve volumetric shadows ...40

Figure 22: The participating medium casts a shadow onto the ground ...41

Figure 23: The shadow does not take on the colour of the medium41

Figure 24: The rendered medium viewed while looking towards the light, orthogonal

to the light and away from the light ..42

Figure 25: 500 particles rendered with 1, 2, 3, 8, 9, and 10 Simpson's rule steps 43

Figure 26: Frame time vs step count for different particle counts43

Figure 27: A single particle with u=1 with 1, 2 and 3 Simpson's rule steps. A lower

step count results in artefacts due to under-sampling of the extinction ...44

Figure 28: Particles rendered at 20m, 40m and 60m44

Figure 29: Frame time vs particle count at different distances45

Figure 30: Frame time vs particle size...46

Figure 31: With and without large kernel PCF ...47

Figure 32: The medium with two Simpson's rule steps and fading factor 1.6, 3 and 10

 ..47

Figure 33: Frame time vs falloff parameter f ..48

Figure 34: From top, left to right: The medium with 2, 5, 10, 20, 50 and 100 shadow

slices ...49

Figure 35: From top, left to right: The volumetric shadows visualised with 2, 5, 10,

20, 50 and 100 shadow slices ...50

Figure 36: Frame time vs shadow map depth slices50

Figure 37: The medium and the volumetric shadow map visualised at various

resolutions. From left to right: 32x32, 256x256, 1024x102451

Figure 38: Frame time vs volumetric shadow map width.........................52

Figure 39: A variety of different media...53

Figure 40: A "typical" configuration and its worst case performance scenario 54

Figure 41: Left: The default configuration vs Right: No extinction fading and size

reduction to take up approximately the same volume55

9

List of Equations

Equation 1 ...13

Equation 2 ...13

Equation 3 ...14

Equation 4 ...14

Equation 5 ...17

Equation 6 ...21

Equation 7 ...27

Equation 8 ...27

Equation 9 ...29

Equation 10 ...30

Equation 11 ...33

10

1 Introduction

1.1 Context

Participating media refers to volumes of particles that participate in light transport by

absorbing or scattering light that passes through them (Pharr, Jakob and

Humphreys, 2023). Common examples of participating media in graphics

applications include steam, smoke, fog, clouds and even air and water. Since such

examples of participating media are so commonly found in the real world, they form

a crucial component of modern games and graphics applications.

Figure 1: Examples of participating media in games. Left: Volumetric fog in the Unreal Engine (Epic Games, no

date). Right: Clouds in the Decima Engine (Schneider, 2023)

A common technique used to render smoke and clouds is to use billboards, which

are textures that are always rotated to face the camera. The billboards themselves

are typically emitted as part of a particle system. This system is relatively cheap to

render and easy to animate, but is difficult to render in a physically based manner.

To render participating media in a more physically based manner, they are often

represented using voxels or density textures. The light contribution for a given pixel

is integrated through ray-marching, which involves casting a ray from the camera

through the surface, taking samples of the lighting contribution and summing them

up. For accurate self-shadowing and in-scattering, a second ray-marching step

towards the light is needed at each sampling point to compute the light arriving at the

11

sample point from the light source. The medium itself is typically a density field,

either modelled analytically or sampled from a 3D texture. These methods often

result in visually complex scattering and shadowing phenomena but suffer from the

drawbacks of being expensive to compute and inflexible to animate. This process

can be computationally accelerated using froxels (Hillaire, 2015), but such methods

may suffer from temporal ghosting issues under motion. Interval shading (Tricard,

2024) is a technique that takes advantage of the recently introduced mesh shading

pipeline to represent volume data using tetrahedrons, which can be rendered

through rasterization. These tetrahedrons could theoretically be used to model a

system of volumetric particles. Using interval shading, the optical depth can be

computed for a tetrahedron without the need to maintain a voxel grid or resort to

expensive ray-marching techniques. Furthermore, since the participating medium is

represented using particles rather than voxels, it would be easy to animate.

However, Tricard only demonstrates order-independent volume rendering and a

solution for physically based lighting of tetrahedron primitives is yet to be

determined.

This project proposes and evaluates a method of lighting a particle system

composed of these tetrahedron primitives. Each tetrahedron is composed of a

participating medium. Since interval shading can only be applied to order-

independent rendering, this project extends the method for order-dependent volume

rendering using a fast GPU-accelerated sorting algorithm.

1.2 Research question

Can the interval shading technique be used for real-time physically based rendering

of participating media represented as a particle system, while maintaining visual

fidelity under motion?

1.3 Aim

To develop and evaluate a rasterization-based method for physically based

rendering of participating media represented as a particle system, using the interval

shading technique. The method should be performant enough to be suitable for real-

time applications, and should maintain visual fidelity under animation of the medium,

12

light or camera without objectionable artefacts. This method will be referred to as the

Interval Shaded Volumetrics method, or ISV method.

2 Background

2.1 Physically based light scattering theory

This section introduces the elements of modern physically based light scattering

theory, as this is required to understand the state-of-the-art literature.

Chandrasekhar’s Radiative Transfer (Chandrasekhar, 1960) is the seminal book on

volume light transport. It introduces the radiative transfer equation, which describes

the distribution of radiance in volumes. This equation is described by many authors

(Hillaire, 2015; Pharr, Jakob and Humphreys, 2023; Fong et al., 2017) and has been

used to derive the volume rendering equation, used to compute the incident light

along a view ray passing through participating media. This project focuses solely on

single scattering, which considers only one bounce of light on the particles

constituting the participating media. Multiple scattering tracks more than one bounce

per light path and is out of scope of this project beyond a simple approximation.

Participating media materials are defined by the following parameters:

1. The absorption σ𝑎. This defines the light absorbed by the medium per unit

distance.

2. The scattering σ𝑠. This defines the light scattered per unit distance.

3. The extinction coefficient σ𝑡 = σ𝑎 + σ𝑠. This describes the attenuation of the

light in the medium.

4. The albedo ρ =
σ𝑠

σ𝑠+σ𝑎
. This effectively describes the colour of the medium.

5. The phase function 𝑝. This describes the distribution of light bounce directions

in the medium.

Note that participating media materials can be described using a combination either

of absorption and scattering, or extinction and albedo. The latter combination is often

more intuitive for artists to understand (Hillaire, 2015) and is the convention used in

this project.

13

This project uses Hillaire’s volume scattering equation (Hillaire, 2015) to compute

lighting. Let there be a single light with direction L whose radiance is given by 𝑅. For

convenience of notation, any point along the view ray 𝑉 is represented by its

distance to the camera z, and 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 are the near and far bounds of the

participating medium respectively. Let 𝐶 denote the incoming radiance along the

view ray from the other side of the participating medium. The lighting model only

accounts for single scattering. The total radiance 𝐶𝑜 along a given view ray is

modelled as:

𝐶𝑜 = 𝐶𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) + ∫ 𝑅
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

ρ𝑇𝐿(𝑧)𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧)Vis(𝑧)𝑝(𝐿, 𝑉)σ𝑡(𝑧) 𝑑𝑧 (1)

Equation 1

Figure 2: The components of the volumetric rendering equation

Here, 𝑇𝑉 and 𝑇𝐿 denote the transmittance along the view ray and the light ray

respectively.

𝑇𝑉(𝑧1, 𝑧2) = 𝑒(−τ𝑉(𝑧1,𝑧2)) (2)

Equation 2

where

14

τ𝑉(𝑧1, 𝑧2) = ∫ σ𝑡(𝑥)
𝑧2

𝑧1

 𝑑𝑥

𝜏𝑉(𝑧1, 𝑧2) is the optical thickness between 𝑧1 and 𝑧2 along the view ray 𝑉. 𝑇𝐿 and τ𝐿

are similar, except that the light ray is used instead of the view ray.

𝑇𝐿(𝑧) = 𝑒−τ𝐿(𝑧) (3)

Equation 3

The rendering equation can also be rewritten as follows:

𝐶𝑜 = 𝐴 × 𝐶 + 𝐶𝑠𝑐𝑎𝑡 (4)

Equation 4

Here, 𝐴 = 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) and 𝐶𝑠𝑐𝑎𝑡 is the first term containing the integral from

Equation 1. Intuitively, 𝐶𝑠𝑐𝑎𝑡 represents the light scattered through the volume, 𝐶 is

the light on the other side of the volume and 𝐴 is the attenuation applied to 𝐶 through

the volume.

2.2 Prior work and motivation

One of the first and most influential techniques for physically based volumetric

rendering is Ubisoft’s Volumetric Fog (Wronski, 2014). As pointed out by Wronski

himself in his presentation, prior approaches that involved billboards and particles

were artist-dependent, tedious to create and did not respond correctly to different

lighting conditions. Volumetric Fog accumulates scattering and density information in

a view frustum aligned 3D texture (called froxels), then the scattering equation is

solved by marching through this texture along the view ray. This method provides

convincing results for phenomena such as crepuscular rays, but is only suitable for

large-scale media such as fog and does not account for self-shadowing along the

light ray.

A more unified volumetric rendering system used by the Frostbite engine was

presented by (Hillaire, 2015). Hillaire’s presentation forms the basis of volumetric

rendering systems used in modern titles such as The Last of Us Part II (Kovalovs,

Aug 17, 2020) and Red Dead Redemption II (Bauer, 2019). This system is also

voxel-based and supports self-shadowing. It makes use of multiple frustum-aligned

15

3D textures to accumulate material properties, light scattering and extinction and

finally to integrate volumetric lighting.

Figure 3: The frustum-aligned volumes used by the Frostbite engine (Hillaire, 2015)

The method begins by first sampling sources of participating media to populate the

material properties froxels (the so-called “V-buffer”, shown in red in Figure 1).

Participating media data can come from different sources, such as depth fog, height

fog or local fog volumes. Variation may be added by sampling density from an artist-

authored 3D input texture. The scattering, extinction, emissive and average phase

parameter 𝑔 are sampled once per froxel and stored.

Next, the incoming scattered light and extinction are computed and stored in the

second volume (blue in Figure 3). The incoming scattered light is computed as

𝑅 ρ 𝑉𝑖𝑠(𝑧) σ𝑡(𝑧) 𝑝(𝐿, 𝑉) for each contributing light and summed.

Finally, this volume is used to integrate scattering and extinction along the view ray.

This computes 𝐶𝑠𝑐𝑎𝑡 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) for each froxel, where 𝑧𝑚𝑎𝑥 is taken as the

position of each froxel. Then when rendering surfaces, this volume can be sampled

and 𝐶𝑠𝑐𝑎𝑡 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) can be trivially applied similar to pre-multiplied colour

and alpha.

Naively applying this method results in aliasing under camera motion or from high-

frequency lights or shadows due to under-sampling of the media, since only one

sample per voxel is taken per frame. To address this, (Hillaire, 2015) proposes to

jitter sampling points within each froxel. The same jitter offset is used for all samples

16

along the view ray. The scattering and material samples must be jittered in sync with

one another. The previous frame’s scattering and extinction volume is reprojected

and blended with the current volume. This is effective in removing most aliasing

artefacts, particularly the aliasing under camera motion and flickering of shadows.

However, this temporal reprojection still causes ghosting when light sources are

animated and further workarounds are needed for such cases (Epic Games). Thus,

there is a need for a high-performance physically based volumetric rendering method

that supports animation without causing temporal artefacts.

(Tricard, 2024) proposes a novel volume rendering technique called interval shading.

He leverages the newly introduced mesh shading pipeline (Kubisch, 2018) to

generate and emit triangle proxies that can be rasterized for each tetrahedron. The

vertex attributes of these triangle proxies are set in such a way that after

interpolation, the fragment shader receives two depth values 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 as input:

𝑧𝑚𝑖𝑛 is the depth of the front-facing side of the tetrahedron and 𝑧𝑚𝑎𝑥 is the depth of

the rear-facing side. This depth interval can then be

used for shading. Since these tetrahedrons are simply rasterized without the need

for any intermediate structure, they are easy to animate. If each tetrahedron is

composed of participating media, a particle system of this

tetrahedrons could be used to model spatially varying participating media. Interval

shading shows great promise for volume rendering as it is a method of cheaply

computing the distance travelled through participating media, regardless of the

distribution of tetrahedrons in space. However, the method must be adapted for

physically based and order-dependent rendering.

2.3 The Interval Shading method

2.3.1 Overview

This section details the interval shading technique since it forms the foundation of

the proposed method.

(Tricard, 2024) proposes to use tetrahedrons as primitives for volume rendering. He

introduces an interval shader as a fragment shader that receives a depth interval for

17

a single fragment. One value corresponds to the depth of the front faces of the

tetrahedron, and the other to the back faces. The interval shader can then use this

depth interval to compute the current fragment’s colour for volume rendering. Tricard

proposes a method using mesh shaders to coerce the rasterizer to compute two

depths per fragment. He first shows how this can be done for a triangular prismoid

shape and later shows how a tetrahedron can be decomposed into multiple such

prismoids.

2.3.2 Generating depth intervals for a prismoid

Figure 4: A triangular prismoid. Left: in projected space. Right: in world space (Tricard, 2024)

Consider the scenario in Figure 4. The triangular prismoid on the left is in projected

space and is composed of six vertices with 𝑣0, 𝑣1, 𝑣2 forming the first base and 𝑣3,

𝑣4, 𝑣5 forming the second. We consider the case where both bases of the prismoid

project to a single triangle in screen space, such that:

𝑣0. 𝑥𝑦

𝑣0. 𝑤
=

𝑣3. 𝑥𝑦

𝑣3. 𝑤
=

𝑣1. 𝑥𝑦

𝑣1. 𝑤
=

𝑣4. 𝑥𝑦

𝑣4. 𝑤
=

𝑣2. 𝑥𝑦

𝑣2. 𝑤
=

𝑣5. 𝑥𝑦

𝑣5. 𝑤

Any point 𝑝 on the screen space triangle is defined as follows:

𝑝. 𝑥𝑦 =
𝑣0. 𝑥𝑦

𝑣0. 𝑤
. λ0 +

𝑣1. 𝑥𝑦

𝑣1. 𝑤
. λ1 +

𝑣2. 𝑥𝑦

𝑣2. 𝑤
. λ2

 =
𝑣3. 𝑥𝑦

𝑣3. 𝑤
. λ0 +

𝑣4. 𝑥𝑦

𝑣4. 𝑤
. λ1 +

𝑣5. 𝑥𝑦

𝑣5. 𝑤
. λ2

Here, λ0, λ1 and λ2 are the screen space barycentric coordinates of the point p. The

𝑧 coordinates of the two bases of the prism can be found using:

1

p. z0
=

v0. w

v0. z
× λ0 +

v1. w

v1. z
× λ1 +

v2. w

v2. z
× λ2 (5)

Equation 5

1

𝑝. 𝑧1
=

𝑣3. 𝑤

𝑣3. 𝑧
× λ0 +

𝑣4. 𝑤

𝑣4. 𝑧
× λ1 +

𝑣5. 𝑤

𝑣5. 𝑧
× λ2

18

where 𝑝. 𝑧0 is the 𝑧 coordinate of the point 𝑝 on the first base of the prism and 𝑝. 𝑧1

the 𝑧 coordinate of the point 𝑝 on the second. We then have 𝑧𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑝. 𝑧0, 𝑝. 𝑧1)

and 𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑝. 𝑧0, 𝑝𝑧1
). (Tricard, 2024) proposes to coerce the rasterizer to

compute 𝑝. 𝑧0 and 𝑝. 𝑧1, so as to have them as input variables in the fragment

shader. This is done by emitting a triangle proxy for the prismoid with the following

vertices:

{
𝑣0. 𝑥

𝑣0. 𝑤
,

𝑣0. 𝑦

𝑣0. 𝑤
, 0,1}, {

𝑣1. 𝑥

𝑣1. 𝑤
,

𝑣1. 𝑦

𝑣1. 𝑤
, 0,1}, {

𝑣2. 𝑥

𝑣2. 𝑤
,

𝑣2. 𝑦

𝑣2. 𝑤
, 0,1}

and with the following vertex attributes 𝑍:

{
𝑣0. 𝑤

𝑣0. 𝑧
,
𝑣3. 𝑤

𝑣3. 𝑧
}, {

𝑣1. 𝑤

𝑣1. 𝑧
,
𝑣4. 𝑤

𝑣4. 𝑧
}, {

𝑣2. 𝑤

𝑣2. 𝑧
,
𝑣5. 𝑤

𝑣5. 𝑧
}

Setting the 𝑧 coordinates to 0 forces the rasterizer to use screen space barycentric

coordinates to interpolate the vertex attributes. Interpolation of 𝑍 by the screen space

barycentric coordinates gives us
1

𝑝.𝑧0
 and

1

𝑝.𝑧1
 as defined above. Thus, we have two

depths as input in the fragment shader.

2.3.3 Extension to tetrahedrons

To use the approach above for any general shape, that shape must first be

decomposed into prismoids. This decomposition can be done for a tetrahedron

analytically in real time. There are two cases to consider:

1. Case 1: When the tetrahedron projects onto a single triangle in screen space,

the decomposition creates three prismoids.

2. Case 2: When the tetrahedron projects onto a quad in screen space, the

decomposition creates four prismoids.

Figure 5: Two possible prismoid decomposition cases for a tetrahedron. Left: Wireframe of the tetrahedron. Right:
Proxy generated by the mesh shader with vertex indices labelled. Top: Case 1, three triangles are created.

Bottom: Case 2, four triangles are created.

19

To create and emit the triangle proxies, we start by defining 𝑡𝑖 as the 𝑖𝑡ℎ vertex of the

tetrahedron where 𝑖 ∈ [0,3] and 𝑝𝑗 as the 𝑗𝑡ℎ vertex of the proxy.

2.3.3.1 Case 1

We define 𝑝0:2 as the points on the silhouette of the proxy and 𝑝3 as the point not on

the silhouette.

𝑝0:3 =
𝑡𝑎:𝑑. 𝑥𝑦

𝑡𝑎:𝑑. 𝑤

Where 𝑎, 𝑏, 𝑐 and 𝑑 are indices of the tetrahedron vertices, chosen so that 𝑝0:2 are

ordered in a clockwise direction as shown in Figure 5. For all vertices 𝑝0:2 on the

silhouette, the depths of the front and back faces of the prism are the same.

Therefore, we define:

𝑧𝑚𝑖𝑛0:2 = 𝑧𝑚𝑎𝑥0:2 =
𝑡𝑎:𝑐. 𝑧

𝑡𝑎:𝑐. 𝑤

Our task is to find both depths corresponding to 𝑝3, so that we can emit the triangle

proxies. As 𝑝3 is itself the projection of 𝑡𝑑 we find:

𝑧0 =
𝑡𝑑. 𝑧

𝑡𝑑 . 𝑤

 Next 𝑝3 must be projected onto the face opposite. We follow Equation 5:

1

𝑧1
=

𝑡𝑎. 𝑤

𝑡𝑎. 𝑧
× λ0 +

𝑡𝑏 . 𝑤

𝑡𝑏 . 𝑧
× λ1 +

𝑡𝑐. 𝑤

𝑡𝑐 . 𝑧
× λ2

Then we have 𝑧𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑧0, 𝑧1) and 𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑧0, 𝑧1). Finally, we can emit three

triangle proxies as described in 2.3.2: {𝑝0, 𝑝1, 𝑝3}, {𝑝1, 𝑝2, 𝑝3} and {𝑝2, 𝑝0, 𝑝3} (see

Figure 5).

2.3.3.2 Case 2

Similar to the first case, we define 𝑝0:3 as the points on the silhouette of the proxy

and 𝑝4 as the point not on the silhouette. Once again, the depths of 𝑝0:3 are the

same for both the front and back faces.

𝑝0:3 =
𝑡𝑎:𝑑. 𝑥𝑦

𝑡𝑎:𝑑. 𝑤

𝑧𝑚𝑖𝑛0:3 = 𝑧𝑚𝑎𝑥0:3 =
𝑡𝑎:𝑑 . 𝑧

𝑡𝑎:𝑑. 𝑤

20

Where 𝑎, 𝑏, 𝑐 and 𝑑 are indices of the tetrahedron vertices, chosen so that 𝑝0:3 are

ordered in a clockwise direction as shown in Figure 2. 𝑝4 can be found by solving the

intersection of the segments 𝑝0𝑝2 and 𝑝1𝑝3 such that:

𝑝4 = 𝑝0 + (𝑝2 − 𝑝0) ⋅ 𝑡 = 𝑝1 + (𝑝3 − 𝑝1) ⋅ 𝑠

We adapt Equation (5) to find 𝑧0 and 𝑧1 for 𝑝4, giving us:

1

𝑧1
=

𝑡𝑎. 𝑤

𝑡𝑎. 𝑧
⋅ (1 − 𝑡) +

𝑡𝑐. 𝑤

𝑡𝑐. 𝑧
⋅ 𝑡

1

𝑧0
=

𝑡𝑏 . 𝑤

𝑡𝑏 . 𝑧
⋅ (1 − 𝑠) +

𝑡𝑑. 𝑤

𝑡𝑑 . 𝑧
⋅ 𝑠

Then we have 𝑧𝑚𝑖𝑛4 = 𝑚𝑖𝑛(𝑧0, 𝑧1) and 𝑧𝑚𝑎𝑥4 = 𝑚𝑎𝑥(𝑧0, 𝑧1). Finally, we emit four

proxies as described in 2.3.2: {𝑝0, 𝑝1, 𝑝4}, {𝑝1, 𝑝2, 𝑝4}, {𝑝2, 𝑝3, 𝑝4} and {𝑝3, 𝑝0, 𝑝4} (see

Figure 5).

2.3.4 Clipping of tetrahedrons

As explained in 2.3.2, when creating the proxy, we store the inverse of the depths as

vertex attributes. If the tetrahedron is too close to the near plane, 𝑧𝑚𝑖𝑛 approaches

zero and the interpolation of
1

𝑧𝑚𝑖𝑛
 will create numerical instability. (Tricard, 2024)

proposes to solve this by clipping the tetrahedrons at some small distance ϵ before

the near plane. However, this was omitted from the ISV method for the sake of

simplicity. Tetrahedrons that get too close to the near plane are simply culled

instead.

21

3 Methodology

3.1 The physically based rendering equation

Recall the volume scattering Equation 1. This section adapts the equation to the

particulars of the artefact’s test scenario. The scene will involve a single directional

light with direction L whose radiance is given by 𝑅. The tetrahedrons are not

emissive and are assumed to each have a uniform extinction coefficient 𝜎 and

albedo ρ. 𝑝(𝐿, 𝑉) is the phase function. As we are considering only a single

directional light, both 𝑝 and 𝑅 are independent of 𝑧 and can be taken out of the

integral. The rendering equation then becomes:

𝐶𝑜 = 𝑅ρ × 𝑝(𝐿, 𝑉) ∫ 𝑇𝐿(𝑧)𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧)Vis(𝑧)σ𝑡(𝑧)
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

 𝑑𝑧 + 𝐶 × 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) (6)

Equation 6

3.2 Using blending to solve the rendering equation

DirectX’s blending functionality can be used to compute the physically based

rendering equation, using a process similar to pre-multiplied alpha blending.

To solve the rendering equation using blending, the tetrahedrons must be rendered

back-to-front. The GPU radix sort algorithm (Harada and Howes, 2011) was used to

sort tetrahedrons by their depth. After sorting, the tetrahedrons are drawn to the

render target using interval shading. In the pixel shader, 𝐶𝑠𝑐𝑎𝑡 and 𝐴 are computed

for a single tetrahedron and set as the RGB and alpha values respectively. Since 𝐶

is already present in the render target, equation (5) can be computed using DirectX

12’s blend stage by setting the blend operation to addition, the source blend factor to

1 and the destination blend factor to use source alpha. The resulting colour 𝐶𝑜 will

then be used as 𝐶 for the next tetrahedron and hence the rendering equation is

solved for the entire volume.

22

Figure 6: Integrating the rendering equation using blending

Consider the scenario in Figure 6. The view ray passes through two tetrahedrons in

succession and encounters a colour 𝐶 on the other side. The view ray intersects the

tetrahedrons at 𝑧1, 𝑧2, 𝑧3 and 𝑧4. We assume 𝑧1 < 𝑧2 < 𝑧3 < 𝑧4. For brevity, let 𝐾 =

𝑅ρ × 𝑝(𝐿, 𝑉) and 𝑓(𝑧) = 𝑇𝐿(𝑧)𝑉𝑖𝑠(𝑧)σ𝑡(𝑧).

Applying the method above, the colour 𝐶𝑜 seen by the camera is given by:

𝐶𝑜 = (𝐶𝑇𝑉(𝑧3, 𝑧4) + 𝐾 ∫ 𝑇𝑉(𝑧3, 𝑧)𝑓(𝑧)
𝑧4

𝑧3

 𝑑𝑧) 𝑇𝑉(𝑧1, 𝑧2) + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧2

𝑧1

 𝑑𝑧

Since 𝑇𝑉(𝑧1, 𝑧2)𝑇𝑉(𝑧3, 𝑧4) = 𝑇𝑉(𝑧1, 𝑧4) and 𝑇𝑉(𝑧1, 𝑧2)𝑇𝑉(𝑧3, 𝑧) = 𝑇𝑉(𝑧1, 𝑧), we have:

𝐶𝑜 = 𝐶𝑇𝑉(𝑧1, 𝑧4) + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧2

𝑧1

 𝑑𝑧 + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧4

𝑧3

 𝑑𝑧

The integral ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧3

𝑧2
 𝑑𝑧 is zero since there is no medium present. Therefore,

we arrive at:

𝐶𝑜 = 𝐶𝑇𝑉(𝑧1, 𝑧4) + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧4

𝑧1

 𝑑𝑧

This is equivalent to applying Equation 6 to the interval [𝑧1, 𝑧4], hence proving that

the blending method solves the rendering equation correctly for this idealised case.

This can be trivially extended to multiple tetrahedrons.

23

In practice, this equation is not fully accurate since σ𝑡(𝑧) may vary between

tetrahedrons and the tetrahedrons may overlap. However, this method still produces

plausible results as shown in 4.1.

3.3 Choice of phase function

The phase function 𝑝(𝐿, 𝑉) describes the angular distribution of scattered light in a

participating medium. The simplest phase function is the isotropic phase function

(Pharr, Jakob and Humphreys, 2023):

𝑝𝑖𝑠𝑜(𝐿, 𝑉) =
1

4π

This function describes equal scattering in all directions and is hence independent of

𝐿 and 𝑉. However, many naturally occurring media scatter light anisotropically, either

towards or away from the incident direction. This method makes use of the Henyey-

Greenstein phase function (Henyey and Greenstein, 1941) to model anisotropic as it

is easy to implement and is used in a wide range of modern game engines such as

the Decima engine (Guerrilla Games, 2017). It is as follows:

𝑝𝐻𝐺(𝑐𝑜𝑠θ) =
1

4π

1 − 𝑔2

(1 + 𝑔2 + 2𝑔(𝑐𝑜𝑠θ))
3
2

Where 𝑐𝑜𝑠θ = 𝑑𝑜𝑡(𝐿, 𝑉) and 𝑔 ∈ (−1,1) controls the distribution of scattered light.

Although the Henyey-Greenstein phase function is more interesting than the

isotropic phase function, it is often not sufficient to describe complex scattering

distributions found in nature. More complex phase functions can be modelled by a

weighted sum of 𝑛 simpler phase functions (Pharr, Jakob and Humphreys, 2023) as

follows:

𝑝(𝐿, 𝑉) = ∑ 𝑤𝑖

𝑛

𝑖=1

𝑝𝑖(𝐿, 𝑉)

Where the weights 𝑤𝑖 all sum to 1 to maintain normalisation. In this project, the

phase function is computed as a weighted sum of the isotropic and Henyey-

Greenstein phase functions as follows:

𝑝(𝐿, 𝑉) = (1 − 𝑎)𝑝𝑖𝑠𝑜(𝐿, 𝑉) + 𝑎 × 𝑝𝐻𝐺(𝐿, 𝑉)

24

Here, 𝑎 ∈ [0,1] is the anisotropy parameter, which describes the contribution of the

Henyey-Greenstein phase function. This is distinct from the asymmetry parameter 𝑔,

which controls the degree to which light is scattered towards or away from the

direction of incident light.

It should be noted that this phase function was chosen for its simplicity, but any other

phase function could easily be used with this method.

3.4 Computing optical thickness and transmittance along the light ray

using a volumetric shadow map

To solve the physically based rendering equation, the transmittance along the light

ray 𝑇𝐿 at any point in the volume is computed by rendering the optical thickness

along the light ray into a 3D texture, known as a volumetric shadow map. Since the

extinction coefficient may vary between particles, it is insufficient to merely store the

optical depth in the texture. The optical thickness from the light is accumulated at

multiple slices placed perpendicular to the light direction, and these slices are in turn

copied into the 3D texture for ease of sampling. This volumetric shadow map can be

sampled in a later pass to compute 𝜏𝐿(𝑧) and hence compute 𝑇𝐿(𝑧).

25

Figure 7: Volumetric shadow map for a cloud of tetrahedrons

In Figure 7, optical depths are interpolated between slices 𝑡5 and 𝑡6 to compute

τ𝐿(𝑧).

The algorithm to produce the volumetric shadow map makes use of an intermediate

texture 𝑡 and populates a 3D texture 𝑣 (both storing 32-bit floats) with the contents of

the volumetric shadow map:

1. Clear the intermediate texture 𝑡 to be zero everywhere.

2. Set the first depth slice of 𝑣 to be zero everywhere.

3. Set the blend state to add the incoming pixel to the existing render target.

4. For each depth slice with index 𝑖 ranging from 1 to 𝑛 − 1, where 𝑛 is the

number of depth slices in 𝑣, do the following:

a. Set the far plane distance to 𝑖 ×
𝑓

𝑛−1
, where 𝑓 is the maximum depth of

the shadow map, in world space units.

b. Set the near plane distance to (𝑖 − 1) ×
𝑓

𝑛−1
.

c. Set 𝑡 as the render target and render the particle system from the point

of view of the light, as one would with a conventional shadow map. Cull

26

any particles that intersect with the near plane. This prevents particles

from being drawn more than once.

d. In the pixel shader, compute and output τ𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥), using Equation

2. Different solutions to this equation can be found in 3.7 and 3.9.

3.5 Implementation of interval shading

Tricard’s original interval shading mesh shader (Tricard, 2024) was adapted for use

in this project. Tricard proposes to clip tetrahedrons that intersect with the near

plane, but this feature was omitted from this project for simplicity. Tetrahedrons that

intersect with the near plane are simply culled instead. Since each tetrahedron is

typically small in this case, this does not result in objectionable artefacts.

3.6 Algorithm to solve the physically based rendering equation

The algorithm to solve the physically based rendering Equation 6 is therefore as

follows:

1. Render the volumetric shadow map.

2. Render a conventional shadow map.

3. Render all opaque geometry.

4. Sort the tetrahedrons by depth.

5. Draw the tetrahedrons back-to-front with the blend state configured as

described in 3.2.

6. In the pixel shader, sample τ𝑚𝑖𝑛 and τ𝑚𝑎𝑥 from the volumetric shadow map.

7. Sample 𝑉𝑖𝑠(𝑧) from the conventional shadow map.

8. In the pixel shader, compute and output 𝐶𝑠𝑐𝑎𝑡 as the RGB colour.

9. In the pixel shader, compute and output 𝐴 = 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) as the alpha.

Filtering techniques such as large kernel PCF (Reeves, Salesin and Cook, 1987) can

also be applied when sampling 𝑉𝑖𝑠(𝑧). This makes the shadows in the medium

appear smoother, but at a higher computational cost.

Different methods of computing 𝐶𝑠𝑐𝑎𝑡 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧) were attempted: an analytical

solution assuming constant extinction, a Taylor series approximation with variable

extinction and a numerical integration with variable extinction using Simpson’s rule.

These methods are detailed below.

27

3.7 Analytical solution assuming constant extinction

𝐶𝑠𝑐𝑎𝑡 is given by:

𝐶𝑠𝑐𝑎𝑡 = 𝑅ρ × 𝑝(𝐿, 𝑉) ∫ 𝑇𝐿(𝑧)𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧)Vis(𝑧)σ𝑡(𝑧)
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

 𝑑𝑧 (7)

Equation 7

To approximate 𝑇𝐿(𝑧), we assume that 𝜏𝐿(𝑧) varies linearly between 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥.

Let τ𝑚𝑖𝑛 = τ𝐿(𝑧𝑚𝑖𝑛) and τ𝑚𝑎𝑥 = τ𝐿(𝑧𝑚𝑎𝑥).

𝑇𝐿(𝑧) = 𝑒
(−τ𝑚𝑖𝑛−

(τ𝑚𝑎𝑥−τ𝑚𝑖𝑛)(𝑧−𝑧𝑚𝑖𝑛)
𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛

)
(8)

Equation 8

As a first step, the extinction 𝜎𝑡(𝑧) was assumed to be constant throughout a

tetrahedron, i.e. 𝜎𝑡(𝑧) = σ, ∀ 𝑧. τ(𝑧1, 𝑧2) then becomes σ(𝑧2 − 𝑧1). For simplicity,

𝑉𝑖𝑠(𝑧) was assumed to be 1 everywhere. Equation 7 can then be integrated

analytically:

𝐶𝑠𝑐𝑎𝑡 = 𝑅 ρ × 𝑝(𝐿, 𝑉)

×
σ(𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)(𝑒(σ𝑧𝑚𝑎𝑥+τ𝑚𝑎𝑥) − 𝑒(σ𝑧𝑚𝑖𝑛+τ𝑚𝑖𝑛))𝑒(−σ𝑧𝑚𝑎𝑥−τ𝑚𝑎𝑥−τ𝑚𝑖𝑛)

σ𝑧𝑚𝑎𝑥 − σ𝑧𝑚𝑖𝑛 + τ𝑚𝑎𝑥 − τ𝑚𝑖𝑛

Also:

𝐴 = 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) = 𝑒−σ(𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛)

Figure 8: The results of the analytical shading method with constant extinction

28

Since Equation 7 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) can be integrated analytically, they were trivial

to compute and output in the interval shader. The resulting visuals resembles a cloud

of smoke, especially with the volumetric shadows. However, the constant extinction

value causes the entire tetrahedron to be filled with participating medium, resulting in

the tetrahedron edges being visible. These sharp geometric edges are not visible in

real smoke or clouds.

Figure 9: Constant extinction within a tetrahedron causes edges to be visible

3.8 Hiding of tetrahedron edges

To hide the tetrahedron edges, the extinction 𝜎𝑡(𝑧) is faded exponentially with

distance from the tetrahedron centre.

29

Figure 10: Extinction fading

Consider the tetrahedron shown in Figure 10. The pixel along the view ray 𝑉 is

currently being shaded. The points of entry and exit are labelled 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥

respectively. The vector from 𝑧𝑚𝑖𝑛 to the centre has a length 𝑑 and angle α with 𝑉.

Using the law of cosines, the distance 𝑙(𝑧) from any point 𝑧 along 𝑉 to the centre is

given by:

𝑙(𝑧) = √−2 𝑑(𝑧 − 𝑧𝑚𝑖𝑛) cos(α) + 𝑑2 + (𝑧 − 𝑧𝑚𝑖𝑛)2

Using this, we can fade the extinction exponentially:

σ𝑡(𝑙(𝑧)) = 𝑒
−50𝑙(𝑧)2

𝑢2

𝑢 is a parameter that can be used to control the extinction falloff distance. Finally,

σ𝑡(𝑧) is therefore:

σ𝑡(𝑧) = σ𝑒
(

50 (2 𝑑(𝑧−𝑧𝑚𝑖𝑛) cos(α)−𝑑2−(𝑧−𝑧𝑚𝑖𝑛)2)

𝑢2)
(9)

Equation 9

3.9 Integrating 𝑪𝒔𝒄𝒂𝒕 using a Taylor series expansion

𝐶𝑠𝑐𝑎𝑡 and 𝐴 must be computed again using the faded extinction function. From

Equation 9 and Equation 2, we have:

30

𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧) = 𝑒
(−

1
20

 √2√πσ𝑢(𝑒𝑟𝑓(
5 √2𝑑 cos(α)

𝑢
)−𝑒𝑟𝑓(

5 √2(𝑑 cos(α)−𝑧+𝑧𝑚𝑖𝑛)
𝑢

))𝑒
(

50 𝑑2 cos2(α)

𝑢2 −
50 𝑑2

𝑢2)
)

(10)

Equation 10

HLSL does not provide an intrinsic function to compute 𝑒𝑟𝑓. Tokuyoshi’s 𝑒𝑟𝑓 code

(Tokuyoshi, 2022) was used instead.

It is impractical to analytically integrate Equation 7 when using the faded extinction

function. An approximation using the Taylor series expansion was attempted instead.

The Taylor series expansion of a function 𝑓(𝑥) at a real or complex number 𝑎 is

given by:

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ = ∑

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

Integrating this, we have:

∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝑎)(𝑥 − 𝑎) +
𝑓′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯

= ∑
𝑓(𝑛)(𝑎)

(𝑛 + 1)!
(𝑥 − 𝑎)𝑛+1

∞

n=0

To maximise accuracy, the expansion point 𝑎 was chosen to be
𝑧𝑚𝑖𝑛+𝑧𝑚𝑎𝑥

2
. The 𝑛-th

order derivative 𝑓(𝑛)(𝑎) was computed numerically using the finite forward

difference. The first four terms of the series above were computed and used to

approximate the integral in (7). However, this approach did not result in a visually

accurate appearance. Many geometric edges are still visible, and the image contains

objectionable firefly artefacts. Owing to these shortcomings, this approach was not

explored further.

31

Figure 11: Taylor series integration results in firefly artefacts

3.10 Integrating 𝑪𝒔𝒄𝒂𝒕 using Simpson’s rule

Since the Taylor series integration method proved to be inaccurate, an alternative

numerical integration approach using Simpson’s rule was explored. Simpson’s rule is

as follows:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈
𝑏 − 𝑎

6
(𝑓(𝑎) + 4𝑓 (

𝑎 + 𝑏

2
) + 𝑓(𝑏))

The accuracy of this method can be improved by dividing the interval [𝑎, 𝑏] into 𝑛

steps or sub-intervals, applying Simpson’s rule to each interval in turn and then

summing the results. As 𝑛 increases, the error diminishes. Since a high step count

incurs a performance cost, the step count 𝑛 was made configurable in the artefact.

By default, only a single step spanning the entire interval [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥] is used.

To apply Simpson’s rule to Equation (7), 𝑇𝐿(𝑧) and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧) are computed using

Equation 8 and Equation 10 respectively. Vis(𝑧) must be sampled from a shadow

map, and σ𝑡(𝑧) is computed using Equation 9.

32

Figure 12: The Simpson’s rule method avoids objectionable artefacts

As shown above, the Simpson’s rule method produces plausible results. There are

subtle artefacts detailed in 4.1, but these do not detract from the overall appearance

of the medium.

3.11 Early return for invisible pixels

Figure 13: Wasted pixels visualised for a single particle with u=1.6. Visible pixels are shaded in green, while
pixels with extinction below the cutoff are shaded red

When the faded extinction from Equation 9 is applied, the optical thickness at many

pixels covered by a tetrahedron becomes so low as to be invisible. However, the

pixel shader is still invoked for these pixels, resulting in unnecessary work done.

33

These “wasted pixels” are visualised above in red. To mitigate this performance loss,

the optical thickness is set to 0 if τ𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) is found to be less than some small

threshold ϵ. This results in significant performance gains and is documented in 4.2.6.

3.12 Multiple scattering approximation

The model presented thus far only accounts for single scattering. To approximate

multiple scattering, a term 𝐶𝑚𝑢𝑙 is computed as follows:

𝐶𝑚𝑢𝑙 =
σ𝑡 (

𝑧𝑚𝑖𝑛 + 𝑧𝑚𝑎𝑥

2)

σ
× ρ 𝑅 𝑝(𝐿, 𝑉) × 0.001 × 𝑚 (11)

Equation 11

Here, 𝑚 ∈ [0,1] is a parameter to control the intensity of the multiple scattering term.

Though this term is crude and not physically based, it improves the visual fidelity as

explained in 4.1.3.

3.13 Volumetric shadows on opaque objects

The volumetric shadow map can also be sampled to cast shadows onto opaque

objects. This process is similar to sampling a conventional shadow map. The

algorithm for volumetric shadowing is as follows:

1. In the pixel shader, convert the world space coordinates of the pixel being

shaded into shadow map space.

2. Sample the optical thickness τ from the volumetric shadow map.

3. Compute the transmittance 𝑇 = 𝑒−τ.

4. Use the transmittance 𝑇 as the shadow factor when computing lighting.

3.14 Animation of the medium

To demonstrate that the rendering method is without artefacts even in motion, a

simple particle simulation was implemented. Each particle is assigned a target

position within a cube. The entire cube can be moved, and particles will accelerate

towards their target positions over time with their velocities damped by viscosity.

Additionally, the user can press the left mouse button to apply an impulse to any

particles that are close to the mouse cursor. The simulation logic was kept

deliberately simple to allow for focus on the rendering method.

34

3.15 Occlusion of the medium

Since the interval shading technique works by splatting triangle proxies onto the near

plane, the tetrahedron particles are not occluded by the preceding contents of the

depth buffer. To overcome this limitation, the pixel shader computes and writes a

depth to the depth buffer using DirectX’s SV_Depth semantic. The pixel depth is

computed as the depth of the near point of the interval.

3.16 Parameterisation

Figure 14: Available parameters

The project has many parameters, as shown above in Figure 14. The main

parameters concerning the rendering method can be found under the Material

section. Some of these parameters are adjusted slightly for user-friendliness, but

they all map to variables used by this method as explained below:

35

1. The Particle Count slider controls the number of particles. It ranges from 1 to

65,535.

2. The Scale slider adjusts the size of each particle. A scale of 1 means that the

distance from any vertex to the centre of a tetrahedron is 1m.

3. The Albedo is the colour of the medium, mapping directly to ρ in the rendering

equation.

4. The Extinction parameter varies from 0 to 100 and maps to σ, adjusted slightly

for user-friendliness. In addition, each particle has a randomized extinction

multiplier in the range [5,10]. σ is calculated as: 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 ×

𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 0.0001.

5. The Extinction Falloff ranges from 0 to 10 and controls the falloff parameter 𝑢

in Equation (8), which is computed using 𝑢 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑐𝑎𝑙𝑒 × 𝑓𝑎𝑙𝑙𝑜𝑓𝑓.

6. The Scattering Anisotropy controls the parameter 𝑎 from 3.3.

7. The Scattering Asymmetry controls the parameter 𝑔 from 3.3.

8. The Multi-Scattering Factor is the multiple scattering parameter 𝑚 in Equation

11.

9. The Rendering Method dropdown can be used to toggle the rendering method

between Simpson’s rule (3.10), the Taylor series integration (3.9) or the

analytical solution without faded extinction (3.7). There is also an option to

visualise wasted pixels.

10. The Step Count slider ranges from 1 to 10 and controls the number of

Simpson’s rule steps taken, if the Simpson’s rule rendering method is

selected.

11. The Soft Shadows checkbox can be used to toggle the use of large kernel

PCF when sampling 𝑉𝑖𝑠(𝑧).

In addition to these, controls to modify the light (whose irradiance is mapped to 𝑅),

move the medium, pause the particle simulation or move the props can be found in

the other UI sections.

3.17 Testing and validation

To assess whether the method can effectively render participating media, a

qualitative analysis of the following desired characteristics was conducted:

1. Scattering of light towards the camera

2. Self-shadowing of the medium

36

3. Volumetric shadows cast by opaque objects into the medium

4. Volumetric shadows cast by the medium onto opaque objects

5. Anisotropic scattering of light

6. Visual fidelity under motion

To assess the performance characteristics of the method, the frame time in

milliseconds was measured and plotted as the following parameters were varied:

1. Simpson’s rule steps

2. Particle count

3. Camera distance

4. Particle size

5. Large kernel PCF (on vs off)

6. Extinction fading

7. Volumetric shadow map depth slices

8. Volumetric shadow map resolution

37

4 Results

4.1 Qualitative analysis of the visuals

4.1.1 Scattering of light towards the camera

Light scattering in participating media make illumination visible even in pixels where

there are no visible surfaces to reflect it (Pharr, Jakob and Humphreys, 2023). This

scattering phenomenon is observable in the artefact, and the scattered light colour is

affected both by the colour of the light and the albedo of the medium.

Figure 15: The colour of the participating medium is affected by the colour of incident light

38

Figure 16: The colour of the participating medium is affected by its own albedo

4.1.2 Self-shadowing of the medium

Light is scattered or absorbed as it passes through the medium, resulting in some

parts of the medium appearing darker than others.

Figure 17: The medium shadows itself, resulting in the bottom right portion appearing dark

4.1.3 Volumetric shadows cast by opaque objects

When light passing through a participating medium is occluded, the occluded parts of

the medium do not scatter light towards the camera, resulting in a volumetric shadow

in the medium. These volumetric shadows are observable in the artefact as well.

39

Figure 18: The cube and the sphere both occlude light, casting volumetric shadows into the participating medium

If the particles are large and few in number, aliasing artefacts can appear due to

under-sampling of 𝑉𝑖𝑠(𝑧). These artefacts can be removed either by increasing the

Simpson’s rule step count or by increasing the number of particles, as shown in

Figure 19.

Figure 19: Left: 100 particles, size 6, 1 step. Centre: 100 particles, size 6, 10 steps. Right: 5000 particles, size 6,
1 step

When viewing a volumetric shadow head-on, it can sometimes look like a hole

through the medium, as shown in Figure 20.

40

Figure 20: Left: A shadow cast onto a high extinction medium. Centre: When a shadow is cast onto a low
extinction medium, it looks like a hole. Right: Hole-like shadows viewed from the other side of the medium

This phenomenon occurs because no light is scattered towards the eye from within

the shadow, making the space appear empty. Multiple scattering is required to

alleviate this effect, as shown in Figure 21.

Figure 21: Multiple scattering (right) can improve volumetric shadows

4.1.4 Volumetric shadows cast onto opaque objects

Light is attenuated as it passes through the participating medium, resulting in

shadows cast onto other objects (Pharr, Jakob and Humphreys, 2023).

41

Figure 22: The participating medium casts a shadow onto the ground

Participating media in the artifact do indeed cast shadows onto the ground. However,

these shadows do not take on the colour of the medium and are greyscale instead.

Figure 23: The shadow does not take on the colour of the medium

42

4.1.5 Anisotropic scattering of light

Figure 24: The rendered medium viewed while looking towards the light, orthogonal to the light and away from
the light

In many naturally occurring media, the scattering of light is dependent on the angle

between the incident and outgoing direction. In the artefact, the rendered medium

looks different when viewed from different angles, and this anisotropy is

configurable.

4.1.6 Maintenance of visual fidelity under motion

All of the above properties are observable in this artefact even when the particles,

light, camera or all three are in motion, appearing correctly without the presence of

any visual glitches or artefacts.

4.2 Quality settings and performance

These performance metrics were captured on a NVIDIA GeForce RTX 4070 Mobile

graphics card.

43

4.2.1 Simpson’s rule steps

Figure 25: 500 particles rendered with 1, 2, 3, 8, 9, and 10 Simpson's rule steps

Figure 26: Frame time vs step count for different particle counts

The frame time increases linearly with the Simpson’s rule step count, with a higher

slope for a larger number of particles. As shown in Figure 25, there is a dramatic

visual difference between one step and two steps. Further increases to the step

count only offer marginal improvements in visual quality, with the changes being

most visible in the volumetric shadows.

44

Figure 27: A single particle with u=1 with 1, 2 and 3 Simpson's rule steps. A lower step count results in artefacts
due to under-sampling of the extinction

Under-sampling of the extinction function σ𝑡(𝑧) can result in the tetrahedron edges

being visible. Figure 27 shows that increasing the Simpson’s rule steps causes the

rendered image to converge towards the expected result.

4.2.2 Screen resolution

Most of the computation involved in rendering the medium is done in the pixel

shader. Therefore, the frame time increases as the screen resolution increases,

since there are more pixels to be shaded.

Resolution Frame Time

800 x 600 1.60 ms

1920 x 1080 3.80 ms

2560 x 1600 7.87 ms

Table 1: Frame time at different resolutions

4.2.3 Particle count and camera distance

Figure 28: Particles rendered at 20m, 40m and 60m

Figure 29 shows that the frame time increases linearly with the number of particles

rendered, with a greater slope depending on the camera distance.

45

Since the method is pixel shader bound, the frame time also increases as the

particles take up more space on the screen. This can be simulated by moving the

camera closer to the medium.

Figure 29: Frame time vs particle count at different distances

46

4.2.4 Particle size

Figure 30: Frame time vs particle size

Increasing particle size also leads to an increase in frame time, since larger particles

result in more pixels covered on the screen. From Figure 30, we observe that the

frame time increases roughly exponentially with particle size. Note that sizes over 15

did not result in a drop in performance, since at this point the particles intersected

with the near plane and were culled as a result.

4.2.5 Large kernel PCF

When sampling the opaque shadow map, the artefact provides the option to use

large kernel PCF (Reeves, Salesin and Cook, 1987). HLSL’s SampleCmp function

was used to implement this with a 5x5 grid pattern.

The performance without large kernel PCF in the default configuration is 3.24

ms/frame and increases to 7.63 ms/frame with large kernel PCF. Furthermore, this

scales with both particle count and step count.

47

Figure 31: With and without large kernel PCF

Figure 31 shows the medium rendered with and without large kernel PCF. We

observe some softening of the volumetric shadows. However, better softening can

be achieved at a lower cost simply by increasing the step count. Therefore, we do

not recommend the use of large kernel PCF with this method.

4.2.6 Extinction fading

Figure 32: The medium with two Simpson's rule steps and fading factor 1.6, 3 and 10

The extinction falloff is exposed in the UI as an artist-friendly parameter 𝑓 that

ranges from 0 to 10. The actual extinction falloff is computed using 𝑢 =

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑐𝑎𝑙𝑒 × 𝑓.

48

Figure 33: Frame time vs falloff parameter f

From Figure 33, we observe that the falloff parameter does indeed improve

performance as it decreases and begins to take effect around the value 6. Through

empirical testing, the value 𝑓 = 1.6 was found to eliminate the hard edges for lower

extinction values while still making use of as many of the tetrahedron pixels as

possible (see figure 32). As the extinction increases, lower values such as 𝑓 = 1.2

are needed in conjunction with a larger step count to eliminate edge artefacts.

4.2.7 Shadow map depth slices

To better illustrate minute details in the shadows, these tests were performed with

5000 particles of size 4 with an extinction of 50 and a step count of 3.

49

Figure 34: From top, left to right: The medium with 2, 5, 10, 20, 50 and 100 shadow slices

We observe that the appearance and visualisation change visibly as the slices are

increased to 20, but further slices do not produce an appreciable difference.

Furthermore, the appearances of the medium with 10 and 20 slices are almost

identical, although the visualisation has some differences.

50

Figure 35: From top, left to right: The volumetric shadows visualised with 2, 5, 10, 20, 50 and 100 shadow slices

Figure 36: Frame time vs shadow map depth slices

We observe in Figure 36 that the frame time barely increases with the depth slice

count. We conclude that a slice count between 10-20 is likely to be optimal for most

scenarios.

51

4.2.8 Shadow map resolution

Figure 37: The medium and the volumetric shadow map visualised at various resolutions. From left to right:

32x32, 256x256, 1024x1024

These metrics were captured with 5000 particles of size 4 with an extinction of 15

and a step count of 3. In Figure 37, we observe that there is a significant visual

difference between a volumetric shadow map with width 32 vs width 256, but

increasing the resolution further does not result in any appreciable changes.

Furthermore, volumetric shadow maps with widths lower than 256 result in banding

artifacts when the particles are in motion. From Figure 38, we observe that the frame

time grows very gradually as the resolution is increased. We conclude that a

volumetric shadow map resolution of 256x256 achieves good visual fidelity while

minimising frame time and avoiding any aliasing artifacts in motion.

52

Figure 38: Frame time vs volumetric shadow map width

53

5 Discussion

5.1 Visual Fidelity

As determined by the qualitative analysis, the method produces plausible visuals,

particularly with higher quality settings. Notably, it maintains this fidelity even when

the particles, lights or camera are in motion. The lighting model is lacking an

emissive component, though this would be trivial to add. Nevertheless, the method is

already able to model a variety of participating media such as fog, clouds and

smoke.

Figure 39: A variety of different media

The visuals are currently somewhat limited by the simplicity of the phase function

used. A relatively straightforward enhancement would be to support more complex

functions, perhaps implemented as weighted combinations of multiple Henyey-

Greenstein lobes. (Gkioulekas et al., 2013) showed that sums of Henyey-Greenstein

and von Mises-Fisher lobes can accurately represent scattering in many materials.

Though this was not tested, one theoretical limitation of this method is its inability to

interact correctly with other translucent objects. Translucent objects must be

rendered in the correct order, but since the particles themselves are translucent, the

objects themselves must be sorted together with the particles. For applications

where it might be rare for translucent objects to be rendered within the particle

54

system, the bounding box of the particle system could perhaps be used for coarse-

grained sorting with the other translucent objects instead.

Another potential limitation is the lack of coloured shadows. However, the greyscale

shadow still contributes a lot to the plausibility of the visuals, and if the particles

themselves are not coloured, then this method will of course be sufficient.

5.2 Performance

The performance of this method is bottlenecked by the pixel shader, which is

invoked once per pixel per particle. We observe that the frame time increases

linearly with particle count. One might therefore propose to render a small number of

particles to improve performance. However, the particle size may have to be

increased as a result to prevent the medium from looking excessively thin. This of

course has a negative effect on performance since more pixels are being shaded.

Tuning the performance of this method therefore involves carefully increasing the

particle size while decreasing the count, or vice versa.

Providing a single representative performance figure is difficult since the frame time

depends on the view, the resolution and many configuration settings. The

configuration in Figure 40 may provide some guidance. Here, there are 500 particles

of size 6 each with a falloff factor 𝑓 = 1.6, rendered with 2 Simpson’s rule steps. In

the view below, the frame time hovers between 3.6 – 4.0 milliseconds per frame at a

resolution of 1920x1080. When the camera was positioned to fill the entire frame

with the medium, the frame time was found to not exceed 12.20 milliseconds per

frame.

Figure 40: A "typical" configuration and its worst case performance scenario

55

6 Conclusion and Future Work

6.1 Conclusion

The aim of this project was to assess whether the interval shading technique could

be used for volumetric rendering of animated participating media in real-time

applications. As demonstrated from the results, it can be argued that the method

presented in this dissertation was successful, especially in terms of visual fidelity.

The rendered medium satisfied the qualitative characteristics outlined in 3.17 with

few exceptions. The maintenance of fidelity under motion of the medium or light

source is a significant strength of this method and addresses the limitations of state-

of-the-art froxel-based methods. The method is already quite performant, and there

is scope for further improvements to be made. The most prominent limitation of this

method is its incompatibility with other translucent objects. However, this can be

worked around to some extent using coarse-grained sorting with bounding boxes.

6.2 Future Work

Given the performance characteristics presented in 5.2, this method can be used to

render participating media in some real-time applications using commodity hardware.

However, improved performance would broaden the feasibility of this method,

particularly for performance-sensitive applications.

One major inefficiency is the wastage of pixels, as described in 3.11. This method

mitigates this through an early return, but further performance gains could be found

through making more efficient use of the pixels to begin with. To estimate the

potential performance gain, consider the scenario in Figure 41.

Figure 41: Left: The default configuration vs Right: No extinction fading and size reduction to take up
approximately the same volume

56

On the left, the medium is configured typically as described in 5.2. On the right, the

falloff factor 𝑓 was set to a very high value of 10, effectively disabling the extinction

falloff. This resulted in the medium taking up a much larger volume than the original

configuration, since the empty space in the tetrahedrons had now been filled. The

tetrahedrons were then reduced in size until they appeared to take up approximately

the same space as before, resulting in the image on the right. The image on the right

therefore approximates the performance characteristics in the scenario where few or

no pixels are wasted. The frame time was found to be 1.50ms, which is considerably

lower than the 3.6ms frame time for the typical scenario. This suggests that there are

large performance gains to be found by reducing pixel wastage.

One way to reduce pixel wastage would be to replace the tetrahedron shape with

some proxy geometry that better approximates a spherical shape, such as a square

or hexagonal billboard or even a spherical mesh. This would preclude the use of the

interval shading technique. However, a shading interval could still be computed in

the pixel shader by performing a ray-sphere intersection with a sphere centred at the

particle centre. The intersection test may incur some cost, but this would likely be

offset by the performance gain from more efficient pixel usage. This method would

also allow for early-Z culling to work. Since it doesn’t require the use of mesh

shaders, this method is compatible with older hardware.

However, the interval shading technique has applicability beyond particle systems.

As demonstrated by Tricard himself (Tricard, 2024), tetrahedrons can be arranged to

form meshes, which can then be rendered using interval shading. The lighting

method presented in this project could be used to perform physically based

participating media rendering of such tetrahedral meshes. Care must be taken to

ensure that the tetrahedrons are of similar sizes and shapes to avoid sorting issues.

If the spherical proxy geometry approach is not used, occlusion culling using a

hierarchical Z-buffer (Greene, Kass and Miller, 1993) can be performed in the mesh

shader to avoid drawing particles that are completely occluded.

Another way to reduce the heavy pixel shader cost would be to render the particle

system to a lower resolution render target, then composite this onto the final render

57

target. This also offers the opportunity to blur the render target to hide any lingering

tetrahedron edges and remove high-frequency details.

There is scope for future work to find a solution to rendering coloured volumetric

shadows. One possible solution could be to accumulate the output radiance 𝐶𝑜 along

the light direction into another 3D texture. This colour could be sampled and used as

irradiance when rendering opaque objects.

The current method only supports directional lights and would benefit from extension

to support point lights and spotlights. In these cases, both the radiance of the light 𝑅

and the light vector 𝐿 are spatially varying rather than constant. Thus, 𝑅 becomes

𝑅(𝑧), 𝐿 becomes 𝐿(𝑧) and the phase function becomes 𝑝(𝐿(𝑧), 𝑉). The terms 𝑅(𝑧)

and 𝑝(𝐿(𝑧), 𝑉) would have to remain inside the integral in Equation 6. These

functions would then need to be sampled when solving the integral using Simpson’s

rule.

The current multiple scattering approximation is not physically based. A more

physically based multiple scattering approach could enhance the visual fidelity of this

method. Real-time multiple scattering remains a difficult problem in computer

graphics, with the most recent work being (Billeter, Sintorn and Assarsson, 2012).

Mixing these particles with other translucent objects also presents a challenging

topic for future research. Indeed, a notable advantage of (Hillaire, 2015) are its

unified capabilities and its ability to render participating media from various sources

together with translucent objects in a scene. Incorporating the ISV method into a

unified solution would greatly increase its applicability.

58

7 List of References

Bauer, F. (2019) ‘Creating the atmospheric world of Red Dead Redemption 2: a
complete and integrated solution’, Advances in Real-Time Rendering in Games,
SIGGRAPH 2019 Courses. ACM, Los Angeles, CA, 28 July – 1 August.

Billeter, M., Sintorn, E. and Assarsson, U. (2012) 'Real-time multiple scattering using
light propagation volumes.', I3D, 12, pp. 119–126.

Chandrasekhar, S. (1960) Radiative transfer. New York: Dover Publications.

Epic Games (no date) Volumetric Fog in Unreal Engine. Available at:
https://dev.epicgames.com/documentation/en-us/unreal-engine/volumetric-fog-in-
unreal-engine#temporal-reprojection (Accessed: 21 Aug, 2025).

Fong, J., Wrenninge, M., Kulla, C. and Habel, R. (2017) ‘Production volume
rendering’, ACM SIGGRAPH 2017 Courses, pp. 1–79.

Gkioulekas, I., Xiao, B., Zhao, S., Adelson, E.H., Zickler, T. and Bala, K. (2013)
'Understanding the role of phase function in translucent appearance', ACM
Transactions on graphics (TOG), 32(5), pp. 1–19.

Greene, N., Kass, M. and Miller, G. (1993) ‘Hierarchical Z-buffer visibility’,
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’93), pp. 231–238.

Guerrilla Games (2017) Nubis: Authoring real-time volumetric cloudscapes with the
Decima engine. Available at: https://www.guerrilla-games.com/read/nubis-authoring-
real-time-volumetric-cloudscapes-with-the-decima-engine (Accessed 21 August
2025)

Harada, T. and Howes, L. (2011) 'Introduction to GPU radix sort', Heterogeneous
Computing with OpenCL. Morgan Kaufman.

Henyey, L.G. and Greenstein, J.L. (1941) 'Diffuse radiation in the galaxy',
Astrophysical Journal, vol.93, p.70-83 (1941)., 93, pp. 70–83.

Hillaire, S. (2015) Physically Based and Unified Volumetric Rendering in Frostbite.
Available at: https://www.ea.com/frostbite/news/physically-based-unified-volumetric-
rendering-in-frostbite (Accessed: Aug 21, 2025).

Kovalovs, A. (Aug 17, 2020) Volumetric Effects of The Last of Us: Part Two. New
York, NY, USA: ACM, pp. 1.

Kubisch, C. (2018) Introduction to Turing Mesh Shaders. Available at:
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/ (Accessed: 21
August 2025).

https://dev.epicgames.com/documentation/en-us/unreal-engine/volumetric-fog-in-unreal-engine#temporal-reprojection
https://dev.epicgames.com/documentation/en-us/unreal-engine/volumetric-fog-in-unreal-engine#temporal-reprojection
https://www.guerrilla-games.com/read/nubis-authoring-real-time-volumetric-cloudscapes-with-the-decima-engine
https://www.guerrilla-games.com/read/nubis-authoring-real-time-volumetric-cloudscapes-with-the-decima-engine
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/

59

Pharr, M., Jakob, W. and Humphreys, G. (2023) Physically based rendering: From
theory to implementation. 4th ed edn. Cambridge: The MIT Press.

Reeves, W.T., Salesin, D.H. and Cook, R.L. (1987) 'Rendering antialiased shadows
with depth maps', Computer graphics (New York, N.Y.), 21(4), pp. 283–291 Available
at: https://doi.org/10.1145/37402.37435.

Schneider, A. (2023) Nubis Cubed: Methods (and madness) to model and render
immersive real-time voxel-based clouds. Available at:
https://advances.realtimerendering.com/s2023/index.html#Nubis3 (Accessed: 21
Aug 2025).

Tokuyoshi, Y. (2022) Accurate Diffuse Lighting from Spherical Gaussian Lights
(Supplementary Document). Available at:
https://yusuketokuyoshi.com/papers/2022/Accurate_Diffuse_Lighting_from_Spherica
l_Gaussian_Lights_(supplemental).pdf (Accessed: Aug 21 2025).

Tricard, T. (2024) 'Interval Shading: using Mesh Shaders to generate shading
intervals for volume rendering', Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 7(3), pp. 1–11.

Wronski, B. (2014) Volumetric Fog: Unified compute shader based solution to
atmospheric scattering. Available at: https://bartwronski.com/wp-
content/uploads/2014/08/bwronski_volumetric_fog_siggraph2014.pdf (Accessed: 21
August 2025).

https://doi.org/10.1145/37402.37435
https://advances.realtimerendering.com/s2023/index.html#Nubis3
https://yusuketokuyoshi.com/papers/2022/Accurate_Diffuse_Lighting_from_Spherical_Gaussian_Lights_(supplemental).pdf
https://yusuketokuyoshi.com/papers/2022/Accurate_Diffuse_Lighting_from_Spherical_Gaussian_Lights_(supplemental).pdf
https://bartwronski.com/wp-content/uploads/2014/08/bwronski_volumetric_fog_siggraph2014.pdf
https://bartwronski.com/wp-content/uploads/2014/08/bwronski_volumetric_fog_siggraph2014.pdf

