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Abstract 

Participating media such as smoke, clouds and fog are common elements of modern 

real-time graphics applications such as games. Traditional methods of participating 

media rendering include ray-marching density fields or various forms of voxel-based 

integration. While these methods produce visually plausible results in many cases, 

they may suffer from aliasing artefacts or temporal ghosting when the media is 

animated or high-frequency lights or shadows are introduced.  

 

This project introduces a novel volumetric particle rendering method based on a 

recently published technique that uses tetrahedrons as primitives for real-time 

volume rendering. This method was evaluated using a qualitative assessment of the 

visuals as well as a quantitative analysis of its performance against various 

parameters. The method was found to support most characteristics required for 

plausible rendering of participating media, and is capable of running comfortably at 

real-time frame rates. Furthermore, the media can be animated and supports high-

frequency light animation and shadows without any temporal ghosting or other 

objectionable artefacts.  

 

There are opportunities for further work to improve performance of this method, 

improve visual fidelity, incorporate into a unified volumetric rendering system and to 

extend this method beyond particles to render tetrahedral meshes. 
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1 Introduction 

1.1 Context 

Participating media refers to volumes of particles that participate in light transport by 

absorbing or scattering light that passes through them (Pharr, Jakob and 

Humphreys, 2023). Common examples of participating media in graphics 

applications include steam, smoke, fog, clouds and even air and water. Since such 

examples of participating media are so commonly found in the real world, they form 

a crucial component of modern games and graphics applications. 

 

 

Figure 1: Examples of participating media in games. Left: Volumetric fog in the Unreal Engine (Epic Games, no 

date). Right: Clouds in the Decima Engine (Schneider, 2023) 

 

A common technique used to render smoke and clouds is to use billboards, which 

are textures that are always rotated to face the camera. The billboards themselves 

are typically emitted as part of a particle system. This system is relatively cheap to 

render and easy to animate, but is difficult to render in a physically based manner.  

 

To render participating media in a more physically based manner, they are often 

represented using voxels or density textures. The light contribution for a given pixel 

is integrated through ray-marching, which involves casting a ray from the camera 

through the surface, taking samples of the lighting contribution and summing them 

up. For accurate self-shadowing and in-scattering, a second ray-marching step 

towards the light is needed at each sampling point to compute the light arriving at the 
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sample point from the light source. The medium itself is typically a density field, 

either modelled analytically or sampled from a 3D texture. These methods often 

result in visually complex scattering and shadowing phenomena but suffer from the 

drawbacks of being expensive to compute and inflexible to animate. This process 

can be computationally accelerated using froxels (Hillaire, 2015), but such methods 

may suffer from temporal ghosting issues under motion. Interval shading (Tricard, 

2024) is a technique that takes advantage of the recently introduced mesh shading 

pipeline to represent volume data using tetrahedrons, which can be rendered 

through rasterization. These tetrahedrons could theoretically be used to model a 

system of volumetric particles. Using interval shading, the optical depth can be 

computed for a tetrahedron without the need to maintain a voxel grid or resort to 

expensive ray-marching techniques. Furthermore, since the participating medium is 

represented using particles rather than voxels, it would be easy to animate. 

However, Tricard only demonstrates order-independent volume rendering and a 

solution for physically based lighting of tetrahedron primitives is yet to be 

determined. 

 

This project proposes and evaluates a method of lighting a particle system 

composed of these tetrahedron primitives. Each tetrahedron is composed of a 

participating medium. Since interval shading can only be applied to order-

independent rendering, this project extends the method for order-dependent volume 

rendering using a fast GPU-accelerated sorting algorithm. 

1.2 Research question 

Can the interval shading technique be used for real-time physically based rendering 

of participating media represented as a particle system, while maintaining visual 

fidelity under motion? 

1.3 Aim 

To develop and evaluate a rasterization-based method for physically based 

rendering of participating media represented as a particle system, using the interval 

shading technique. The method should be performant enough to be suitable for real-

time applications, and should maintain visual fidelity under animation of the medium, 
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light or camera without objectionable artefacts. This method will be referred to as the 

Interval Shaded Volumetrics method, or ISV method. 

2 Background 

2.1 Physically based light scattering theory 

This section introduces the elements of modern physically based light scattering 

theory, as this is required to understand the state-of-the-art literature. 

 

Chandrasekhar’s Radiative Transfer (Chandrasekhar, 1960) is the seminal book on 

volume light transport. It introduces the radiative transfer equation, which describes 

the distribution of radiance in volumes. This equation is described by many authors 

(Hillaire, 2015; Pharr, Jakob and Humphreys, 2023; Fong et al., 2017) and has been 

used to derive the volume rendering equation, used to compute the incident light 

along a view ray passing through participating media. This project focuses solely on 

single scattering, which considers only one bounce of light on the particles 

constituting the participating media. Multiple scattering tracks more than one bounce 

per light path and is out of scope of this project beyond a simple approximation.  

 

Participating media materials are defined by the following parameters: 

1. The absorption σ𝑎. This defines the light absorbed by the medium per unit 

distance. 

2. The scattering σ𝑠. This defines the light scattered per unit distance. 

3. The extinction coefficient σ𝑡 = σ𝑎 + σ𝑠. This describes the attenuation of the 

light in the medium. 

4. The albedo ρ =
σ𝑠

σ𝑠+σ𝑎
. This effectively describes the colour of the medium. 

5. The phase function 𝑝. This describes the distribution of light bounce directions 

in the medium. 

 

Note that participating media materials can be described using a combination either 

of absorption and scattering, or extinction and albedo. The latter combination is often 

more intuitive for artists to understand (Hillaire, 2015) and is the convention used in 

this project. 
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This project uses Hillaire’s volume scattering equation (Hillaire, 2015) to compute 

lighting. Let there be a single light with direction L whose radiance is given by 𝑅. For 

convenience of notation, any point along the view ray 𝑉 is represented by its 

distance to the camera z, and 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 are the near and far bounds of the 

participating medium respectively. Let 𝐶 denote the incoming radiance along the 

view ray from the other side of the participating medium. The lighting model only 

accounts for single scattering. The total radiance 𝐶𝑜 along a given view ray is 

modelled as: 

 

𝐶𝑜 = 𝐶𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) + ∫ 𝑅
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

ρ𝑇𝐿(𝑧)𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧)Vis(𝑧)𝑝(𝐿, 𝑉)σ𝑡(𝑧) 𝑑𝑧 (1) 

Equation 1 

 

Figure 2: The components of the volumetric rendering equation 

Here, 𝑇𝑉 and 𝑇𝐿 denote the transmittance along the view ray and the light ray 

respectively. 

 

𝑇𝑉(𝑧1, 𝑧2) = 𝑒(−τ𝑉(𝑧1,𝑧2)) (2) 

Equation 2 

where  
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τ𝑉(𝑧1, 𝑧2) = ∫ σ𝑡(𝑥)
𝑧2

𝑧1

 𝑑𝑥 

𝜏𝑉(𝑧1, 𝑧2) is the optical thickness between 𝑧1 and 𝑧2 along the view ray 𝑉. 𝑇𝐿 and τ𝐿 

are similar, except that the light ray is used instead of the view ray. 

 

𝑇𝐿(𝑧) = 𝑒−τ𝐿(𝑧) (3) 

Equation 3 

The rendering equation can also be rewritten as follows: 

 

𝐶𝑜 = 𝐴 × 𝐶 + 𝐶𝑠𝑐𝑎𝑡 (4) 

Equation 4 

Here, 𝐴 = 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) and 𝐶𝑠𝑐𝑎𝑡 is the first term containing the integral from 

Equation 1. Intuitively, 𝐶𝑠𝑐𝑎𝑡 represents the light scattered through the volume, 𝐶 is 

the light on the other side of the volume and 𝐴 is the attenuation applied to 𝐶 through 

the volume.  

 

2.2 Prior work and motivation 

One of the first and most influential techniques for physically based volumetric 

rendering is Ubisoft’s Volumetric Fog (Wronski, 2014). As pointed out by Wronski 

himself in his presentation, prior approaches that involved billboards and particles 

were artist-dependent, tedious to create and did not respond correctly to different 

lighting conditions. Volumetric Fog accumulates scattering and density information in 

a view frustum aligned 3D texture (called froxels), then the scattering equation is 

solved by marching through this texture along the view ray. This method provides 

convincing results for phenomena such as crepuscular rays, but is only suitable for 

large-scale media such as fog and does not account for self-shadowing along the 

light ray. 

 

A more unified volumetric rendering system used by the Frostbite engine was 

presented by (Hillaire, 2015). Hillaire’s presentation forms the basis of volumetric 

rendering systems used in modern titles such as The Last of Us Part II (Kovalovs, 

Aug 17, 2020) and Red Dead Redemption II (Bauer, 2019). This system is also 

voxel-based and supports self-shadowing. It makes use of multiple frustum-aligned 
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3D textures to accumulate material properties, light scattering and extinction and 

finally to integrate volumetric lighting. 

 

Figure 3: The frustum-aligned volumes used by the Frostbite engine (Hillaire, 2015) 

The method begins by first sampling sources of participating media to populate the 

material properties froxels (the so-called “V-buffer”, shown in red in Figure 1). 

Participating media data can come from different sources, such as depth fog, height 

fog or local fog volumes. Variation may be added by sampling density from an artist-

authored 3D input texture. The scattering, extinction, emissive and average phase 

parameter 𝑔 are sampled once per froxel and stored.  

 

Next, the incoming scattered light and extinction are computed and stored in the 

second volume (blue in Figure 3). The incoming scattered light is computed as 

𝑅 ρ 𝑉𝑖𝑠(𝑧) σ𝑡(𝑧) 𝑝(𝐿, 𝑉) for each contributing light and summed. 

 

Finally, this volume is used to integrate scattering and extinction along the view ray. 

This computes 𝐶𝑠𝑐𝑎𝑡 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) for each froxel, where 𝑧𝑚𝑎𝑥 is taken as the 

position of each froxel. Then when rendering surfaces, this volume can be sampled 

and 𝐶𝑠𝑐𝑎𝑡 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) can be trivially applied similar to pre-multiplied colour 

and alpha. 

 

Naively applying this method results in aliasing under camera motion or from high-

frequency lights or shadows due to under-sampling of the media, since only one 

sample per voxel is taken per frame. To address this, (Hillaire, 2015) proposes to 

jitter sampling points within each froxel. The same jitter offset is used for all samples 
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along the view ray. The scattering and material samples must be jittered in sync with 

one another. The previous frame’s scattering and extinction volume is reprojected 

and blended with the current volume. This is effective in removing most aliasing 

artefacts, particularly the aliasing under camera motion and flickering of shadows. 

However, this temporal reprojection still causes ghosting when light sources are 

animated and further workarounds are needed for such cases (Epic Games). Thus, 

there is a need for a high-performance physically based volumetric rendering method 

that supports animation without causing temporal artefacts.  

 

(Tricard, 2024) proposes a novel volume rendering technique called interval shading. 

He leverages the newly introduced mesh shading pipeline (Kubisch, 2018) to 

generate and emit triangle proxies that can be rasterized for each tetrahedron. The 

vertex attributes of these triangle proxies are set in such a way that after 

interpolation, the fragment shader receives two depth values 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 as input: 

𝑧𝑚𝑖𝑛 is the depth of the front-facing side of the tetrahedron and 𝑧𝑚𝑎𝑥 is the depth of 

the rear-facing side. This depth interval can then be 

used for shading. Since these tetrahedrons are simply rasterized without the need 

for any intermediate structure, they are easy to animate. If each tetrahedron is 

composed of participating media, a particle system of this 

tetrahedrons could be used to model spatially varying participating media. Interval 

shading shows great promise for volume rendering as it is a method of cheaply 

computing the distance travelled through participating media, regardless of the 

distribution of tetrahedrons in space. However, the method must be adapted for 

physically based and order-dependent rendering. 

 

2.3 The Interval Shading method 

2.3.1 Overview 

This section details the interval shading technique since it forms the foundation of 

the proposed method.  

 

(Tricard, 2024) proposes to use tetrahedrons as primitives for volume rendering. He 

introduces an interval shader as a fragment shader that receives a depth interval for 
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a single fragment. One value corresponds to the depth of the front faces of the 

tetrahedron, and the other to the back faces. The interval shader can then use this 

depth interval to compute the current fragment’s colour for volume rendering. Tricard 

proposes a method using mesh shaders to coerce the rasterizer to compute two 

depths per fragment. He first shows how this can be done for a triangular prismoid 

shape and later shows how a tetrahedron can be decomposed into multiple such 

prismoids. 

2.3.2 Generating depth intervals for a prismoid 

 

Figure 4: A triangular prismoid. Left: in projected space. Right: in world space (Tricard, 2024) 

Consider the scenario in Figure 4. The triangular prismoid on the left is in projected 

space and is composed of six vertices with 𝑣0, 𝑣1, 𝑣2 forming the first base and 𝑣3, 

𝑣4, 𝑣5 forming the second. We consider the case where both bases of the prismoid 

project to a single triangle in screen space, such that:  

𝑣0. 𝑥𝑦

𝑣0. 𝑤
=

𝑣3. 𝑥𝑦

𝑣3. 𝑤
=

𝑣1. 𝑥𝑦

𝑣1. 𝑤
=

𝑣4. 𝑥𝑦

𝑣4. 𝑤
=

𝑣2. 𝑥𝑦

𝑣2. 𝑤
=

𝑣5. 𝑥𝑦

𝑣5. 𝑤
 

Any point 𝑝 on the screen space triangle is defined as follows: 

𝑝. 𝑥𝑦 =
𝑣0. 𝑥𝑦

𝑣0. 𝑤
. λ0 +

𝑣1. 𝑥𝑦

𝑣1. 𝑤
. λ1 +

𝑣2. 𝑥𝑦

𝑣2. 𝑤
. λ2 

           =
𝑣3. 𝑥𝑦

𝑣3. 𝑤
. λ0 +

𝑣4. 𝑥𝑦

𝑣4. 𝑤
. λ1 +

𝑣5. 𝑥𝑦

𝑣5. 𝑤
. λ2 

Here, λ0, λ1 and λ2 are the screen space barycentric coordinates of the point p. The 

𝑧 coordinates of the two bases of the prism can be found using: 

1

p. z0
=

v0. w

v0. z
× λ0 +

v1. w

v1. z
× λ1 +

v2. w

v2. z
× λ2 (5) 

Equation 5 

1

𝑝. 𝑧1
=

𝑣3. 𝑤

𝑣3. 𝑧
× λ0 +

𝑣4. 𝑤

𝑣4. 𝑧
× λ1 +

𝑣5. 𝑤

𝑣5. 𝑧
× λ2 
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where 𝑝. 𝑧0 is the 𝑧 coordinate of the point 𝑝 on the first base of the prism and 𝑝. 𝑧1 

the 𝑧 coordinate of the point 𝑝 on the second. We then have 𝑧𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑝. 𝑧0, 𝑝. 𝑧1) 

and 𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑝. 𝑧0, 𝑝𝑧1
). (Tricard, 2024) proposes to coerce the rasterizer to 

compute 𝑝. 𝑧0 and 𝑝. 𝑧1, so as to have them as input variables in the fragment 

shader. This is done by emitting a triangle proxy for the prismoid with the following 

vertices: 

{
𝑣0. 𝑥

𝑣0. 𝑤
,

𝑣0. 𝑦

𝑣0. 𝑤
, 0,1}, {

𝑣1. 𝑥

𝑣1. 𝑤
,

𝑣1. 𝑦

𝑣1. 𝑤
, 0,1}, {

𝑣2. 𝑥

𝑣2. 𝑤
,

𝑣2. 𝑦

𝑣2. 𝑤
, 0,1} 

and with the following vertex attributes 𝑍:  

{
𝑣0. 𝑤

𝑣0. 𝑧
,
𝑣3. 𝑤

𝑣3. 𝑧
}, {

𝑣1. 𝑤

𝑣1. 𝑧
,
𝑣4. 𝑤

𝑣4. 𝑧
}, {

𝑣2. 𝑤

𝑣2. 𝑧
,
𝑣5. 𝑤

𝑣5. 𝑧
} 

Setting the 𝑧 coordinates to 0 forces the rasterizer to use screen space barycentric 

coordinates to interpolate the vertex attributes. Interpolation of 𝑍 by the screen space 

barycentric coordinates gives us 
1

𝑝.𝑧0
 and 

1

𝑝.𝑧1
 as defined above. Thus, we have two 

depths as input in the fragment shader. 

2.3.3 Extension to tetrahedrons 

To use the approach above for any general shape, that shape must first be 

decomposed into prismoids. This decomposition can be done for a tetrahedron 

analytically in real time. There are two cases to consider: 

1. Case 1: When the tetrahedron projects onto a single triangle in screen space, 

the decomposition creates three prismoids. 

2. Case 2: When the tetrahedron projects onto a quad in screen space, the 

decomposition creates four prismoids. 

 

Figure 5: Two possible prismoid decomposition cases for a tetrahedron. Left: Wireframe of the tetrahedron. Right: 
Proxy generated by the mesh shader with vertex indices labelled. Top: Case 1, three triangles are created. 

Bottom: Case 2, four triangles are created. 
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To create and emit the triangle proxies, we start by defining 𝑡𝑖 as the 𝑖𝑡ℎ vertex of the 

tetrahedron where 𝑖 ∈ [0,3] and 𝑝𝑗 as the 𝑗𝑡ℎ vertex of the proxy. 

2.3.3.1 Case 1 

We define 𝑝0:2 as the points on the silhouette of the proxy and 𝑝3 as the point not on 

the silhouette. 

𝑝0:3 =
𝑡𝑎:𝑑. 𝑥𝑦

𝑡𝑎:𝑑. 𝑤
 

Where 𝑎, 𝑏, 𝑐 and 𝑑 are indices of the tetrahedron vertices, chosen so that 𝑝0:2 are 

ordered in a clockwise direction as shown in Figure 5. For all vertices 𝑝0:2 on the 

silhouette, the depths of the front and back faces of the prism are the same. 

Therefore, we define:  

𝑧𝑚𝑖𝑛0:2 = 𝑧𝑚𝑎𝑥0:2 =
𝑡𝑎:𝑐. 𝑧

𝑡𝑎:𝑐. 𝑤
 

Our task is to find both depths corresponding to 𝑝3, so that we can emit the triangle 

proxies. As 𝑝3 is itself the projection of 𝑡𝑑 we find:  

𝑧0 =
𝑡𝑑. 𝑧

𝑡𝑑 . 𝑤
 

 Next 𝑝3 must be projected onto the face opposite. We follow Equation 5: 

1

𝑧1
=

𝑡𝑎. 𝑤

𝑡𝑎. 𝑧
× λ0 +

𝑡𝑏 . 𝑤

𝑡𝑏 . 𝑧
× λ1 +

𝑡𝑐. 𝑤

𝑡𝑐 . 𝑧
× λ2 

Then we have 𝑧𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑧0, 𝑧1) and 𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑧0, 𝑧1). Finally, we can emit three 

triangle proxies as described in 2.3.2: {𝑝0, 𝑝1, 𝑝3}, {𝑝1, 𝑝2, 𝑝3} and {𝑝2, 𝑝0, 𝑝3} (see 

Figure 5). 

2.3.3.2 Case 2 

Similar to the first case, we define 𝑝0:3 as the points on the silhouette of the proxy 

and 𝑝4 as the point not on the silhouette. Once again, the depths of 𝑝0:3 are the 

same for both the front and back faces. 

𝑝0:3 =
𝑡𝑎:𝑑. 𝑥𝑦

𝑡𝑎:𝑑. 𝑤
 

𝑧𝑚𝑖𝑛0:3 = 𝑧𝑚𝑎𝑥0:3 =
𝑡𝑎:𝑑 . 𝑧

𝑡𝑎:𝑑. 𝑤
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Where 𝑎, 𝑏, 𝑐 and 𝑑 are indices of the tetrahedron vertices, chosen so that 𝑝0:3 are 

ordered in a clockwise direction as shown in Figure 2. 𝑝4 can be found by solving the 

intersection of the segments 𝑝0𝑝2 and 𝑝1𝑝3 such that: 

𝑝4 = 𝑝0 + (𝑝2 − 𝑝0) ⋅ 𝑡 = 𝑝1 + (𝑝3 − 𝑝1) ⋅ 𝑠 

We adapt Equation (5) to find 𝑧0 and 𝑧1 for 𝑝4, giving us: 

1

𝑧1
=

𝑡𝑎. 𝑤

𝑡𝑎. 𝑧
⋅ (1 − 𝑡) +

𝑡𝑐. 𝑤

𝑡𝑐. 𝑧
⋅ 𝑡 

1

𝑧0
=

𝑡𝑏 . 𝑤

𝑡𝑏 . 𝑧
⋅ (1 − 𝑠) +

𝑡𝑑. 𝑤

𝑡𝑑 . 𝑧
⋅ 𝑠 

Then we have 𝑧𝑚𝑖𝑛4 = 𝑚𝑖𝑛(𝑧0, 𝑧1) and 𝑧𝑚𝑎𝑥4 = 𝑚𝑎𝑥(𝑧0, 𝑧1). Finally, we emit four 

proxies as described in 2.3.2: {𝑝0, 𝑝1, 𝑝4}, {𝑝1, 𝑝2, 𝑝4}, {𝑝2, 𝑝3, 𝑝4} and {𝑝3, 𝑝0, 𝑝4} (see 

Figure 5). 

2.3.4 Clipping of tetrahedrons 

As explained in 2.3.2, when creating the proxy, we store the inverse of the depths as 

vertex attributes. If the tetrahedron is too close to the near plane, 𝑧𝑚𝑖𝑛 approaches 

zero and the interpolation of 
1

𝑧𝑚𝑖𝑛
 will create numerical instability. (Tricard, 2024) 

proposes to solve this by clipping the tetrahedrons at some small distance ϵ before 

the near plane. However, this was omitted from the ISV method for the sake of 

simplicity. Tetrahedrons that get too close to the near plane are simply culled 

instead. 
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3 Methodology 

3.1 The physically based rendering equation 

Recall the volume scattering Equation 1. This section adapts the equation to the 

particulars of the artefact’s test scenario. The scene will involve a single directional 

light with direction L whose radiance is given by 𝑅. The tetrahedrons are not 

emissive and are assumed to each have a uniform extinction coefficient 𝜎 and 

albedo ρ. 𝑝(𝐿, 𝑉) is the phase function. As we are considering only a single 

directional light, both 𝑝 and 𝑅 are independent of 𝑧 and can be taken out of the 

integral. The rendering equation then becomes: 

 

𝐶𝑜 = 𝑅ρ × 𝑝(𝐿, 𝑉) ∫ 𝑇𝐿(𝑧)𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧)Vis(𝑧)σ𝑡(𝑧)
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

 𝑑𝑧 + 𝐶 × 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) (6) 

Equation 6 

3.2 Using blending to solve the rendering equation 

DirectX’s blending functionality can be used to compute the physically based 

rendering equation, using a process similar to pre-multiplied alpha blending.  

 

To solve the rendering equation using blending, the tetrahedrons must be rendered 

back-to-front. The GPU radix sort algorithm (Harada and Howes, 2011) was used to 

sort tetrahedrons by their depth. After sorting, the tetrahedrons are drawn to the 

render target using interval shading. In the pixel shader, 𝐶𝑠𝑐𝑎𝑡 and 𝐴 are computed 

for a single tetrahedron and set as the RGB and alpha values respectively. Since 𝐶 

is already present in the render target, equation (5) can be computed using DirectX 

12’s blend stage by setting the blend operation to addition, the source blend factor to 

1 and the destination blend factor to use source alpha. The resulting colour 𝐶𝑜 will 

then be used as 𝐶 for the next tetrahedron and hence the rendering equation is 

solved for the entire volume.  
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Figure 6: Integrating the rendering equation using blending 

Consider the scenario in Figure 6. The view ray passes through two tetrahedrons in 

succession and encounters a colour 𝐶 on the other side. The view ray intersects the 

tetrahedrons at 𝑧1, 𝑧2, 𝑧3 and 𝑧4. We assume 𝑧1 < 𝑧2 < 𝑧3 < 𝑧4. For brevity, let 𝐾 =

𝑅ρ ×  𝑝(𝐿, 𝑉) and 𝑓(𝑧) = 𝑇𝐿(𝑧)𝑉𝑖𝑠(𝑧)σ𝑡(𝑧).  

 

Applying the method above, the colour 𝐶𝑜 seen by the camera is given by: 

 

𝐶𝑜 = (𝐶𝑇𝑉(𝑧3, 𝑧4) + 𝐾 ∫ 𝑇𝑉(𝑧3, 𝑧)𝑓(𝑧)
𝑧4

𝑧3

 𝑑𝑧) 𝑇𝑉(𝑧1, 𝑧2) + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧2

𝑧1

 𝑑𝑧 

 

Since 𝑇𝑉(𝑧1, 𝑧2)𝑇𝑉(𝑧3, 𝑧4) = 𝑇𝑉(𝑧1, 𝑧4) and 𝑇𝑉(𝑧1, 𝑧2)𝑇𝑉(𝑧3, 𝑧) = 𝑇𝑉(𝑧1, 𝑧), we have: 

 

𝐶𝑜 = 𝐶𝑇𝑉(𝑧1, 𝑧4) + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧2

𝑧1

 𝑑𝑧 + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧4

𝑧3

 𝑑𝑧 

 

The integral ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧3

𝑧2
 𝑑𝑧 is zero since there is no medium present. Therefore, 

we arrive at: 

 

𝐶𝑜 = 𝐶𝑇𝑉(𝑧1, 𝑧4) + 𝐾 ∫ 𝑇𝑉(𝑧1, 𝑧)𝑓(𝑧)
𝑧4

𝑧1

 𝑑𝑧 

 

This is equivalent to applying Equation 6 to the interval [𝑧1, 𝑧4], hence proving that 

the blending method solves the rendering equation correctly for this idealised case. 

This can be trivially extended to multiple tetrahedrons. 
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In practice, this equation is not fully accurate since σ𝑡(𝑧) may vary between 

tetrahedrons and the tetrahedrons may overlap. However, this method still produces 

plausible results as shown in 4.1. 

 

3.3 Choice of phase function 

The phase function 𝑝(𝐿, 𝑉) describes the angular distribution of scattered light in a 

participating medium. The simplest phase function is the isotropic phase function 

(Pharr, Jakob and Humphreys, 2023): 

𝑝𝑖𝑠𝑜(𝐿, 𝑉) =
1

4π
 

This function describes equal scattering in all directions and is hence independent of 

𝐿 and 𝑉. However, many naturally occurring media scatter light anisotropically, either 

towards or away from the incident direction. This method makes use of the Henyey-

Greenstein phase function (Henyey and Greenstein, 1941) to model anisotropic as it 

is easy to implement and is used in a wide range of modern game engines such as 

the Decima engine (Guerrilla Games, 2017). It is as follows: 

𝑝𝐻𝐺(𝑐𝑜𝑠θ) =
1

4π

1 − 𝑔2

(1 + 𝑔2 + 2𝑔(𝑐𝑜𝑠θ))
3
2

 

Where 𝑐𝑜𝑠θ = 𝑑𝑜𝑡(𝐿, 𝑉) and 𝑔 ∈ (−1,1) controls the distribution of scattered light. 

Although the Henyey-Greenstein phase function is more interesting than the 

isotropic phase function, it is often not sufficient to describe complex scattering 

distributions found in nature. More complex phase functions can be modelled by a 

weighted sum of 𝑛 simpler phase functions (Pharr, Jakob and Humphreys, 2023) as 

follows: 

𝑝(𝐿, 𝑉) = ∑ 𝑤𝑖

𝑛

𝑖=1

𝑝𝑖(𝐿, 𝑉) 

Where the weights 𝑤𝑖 all sum to 1 to maintain normalisation. In this project, the 

phase function is computed as a weighted sum of the isotropic and Henyey-

Greenstein phase functions as follows: 

𝑝(𝐿, 𝑉) = (1 − 𝑎)𝑝𝑖𝑠𝑜(𝐿, 𝑉) + 𝑎 × 𝑝𝐻𝐺(𝐿, 𝑉) 
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Here, 𝑎 ∈ [0,1] is the anisotropy parameter, which describes the contribution of the 

Henyey-Greenstein phase function. This is distinct from the asymmetry parameter 𝑔, 

which controls the degree to which light is scattered towards or away from the 

direction of incident light.  

 

It should be noted that this phase function was chosen for its simplicity, but any other 

phase function could easily be used with this method. 

3.4 Computing optical thickness and transmittance along the light ray 

using a volumetric shadow map 

To solve the physically based rendering equation, the transmittance along the light 

ray 𝑇𝐿 at any point in the volume is computed by rendering the optical thickness 

along the light ray into a 3D texture, known as a volumetric shadow map. Since the 

extinction coefficient may vary between particles, it is insufficient to merely store the 

optical depth in the texture. The optical thickness from the light is accumulated at 

multiple slices placed perpendicular to the light direction, and these slices are in turn 

copied into the 3D texture for ease of sampling. This volumetric shadow map can be 

sampled in a later pass to compute 𝜏𝐿(𝑧) and hence compute 𝑇𝐿(𝑧). 
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Figure 7: Volumetric shadow map for a cloud of tetrahedrons 

In Figure 7, optical depths are interpolated between slices 𝑡5 and 𝑡6 to compute 

τ𝐿(𝑧). 

The algorithm to produce the volumetric shadow map makes use of an intermediate 

texture 𝑡 and populates a 3D texture 𝑣 (both storing 32-bit floats) with the contents of 

the volumetric shadow map: 

1. Clear the intermediate texture 𝑡 to be zero everywhere. 

2. Set the first depth slice of 𝑣 to be zero everywhere. 

3. Set the blend state to add the incoming pixel to the existing render target. 

4. For each depth slice with index 𝑖 ranging from 1 to 𝑛 − 1, where 𝑛 is the 

number of depth slices in 𝑣, do the following: 

a. Set the far plane distance to 𝑖 ×
𝑓

𝑛−1
, where 𝑓 is the maximum depth of 

the shadow map, in world space units. 

b. Set the near plane distance to (𝑖 − 1) ×
𝑓

𝑛−1
. 

c. Set 𝑡 as the render target and render the particle system from the point 

of view of the light, as one would with a conventional shadow map. Cull 
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any particles that intersect with the near plane. This prevents particles 

from being drawn more than once. 

d. In the pixel shader, compute and output τ𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥), using Equation 

2. Different solutions to this equation can be found in 3.7 and 3.9.  

3.5 Implementation of interval shading 

Tricard’s original interval shading mesh shader (Tricard, 2024) was adapted for use 

in this project. Tricard proposes to clip tetrahedrons that intersect with the near 

plane, but this feature was omitted from this project for simplicity. Tetrahedrons that 

intersect with the near plane are simply culled instead. Since each tetrahedron is 

typically small in this case, this does not result in objectionable artefacts. 

3.6 Algorithm to solve the physically based rendering equation 

The algorithm to solve the physically based rendering Equation 6 is therefore as 

follows: 

1. Render the volumetric shadow map. 

2. Render a conventional shadow map. 

3. Render all opaque geometry. 

4. Sort the tetrahedrons by depth. 

5. Draw the tetrahedrons back-to-front with the blend state configured as 

described in 3.2. 

6. In the pixel shader, sample τ𝑚𝑖𝑛 and τ𝑚𝑎𝑥 from the volumetric shadow map.  

7. Sample 𝑉𝑖𝑠(𝑧) from the conventional shadow map. 

8. In the pixel shader, compute and output 𝐶𝑠𝑐𝑎𝑡 as the RGB colour.  

9. In the pixel shader, compute and output 𝐴 = 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) as the alpha. 

Filtering techniques such as large kernel PCF (Reeves, Salesin and Cook, 1987) can 

also be applied when sampling 𝑉𝑖𝑠(𝑧). This makes the shadows in the medium 

appear smoother, but at a higher computational cost. 

 

Different methods of computing 𝐶𝑠𝑐𝑎𝑡 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧) were attempted: an analytical 

solution assuming constant extinction, a Taylor series approximation with variable 

extinction and a numerical integration with variable extinction using Simpson’s rule. 

These methods are detailed below. 
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3.7 Analytical solution assuming constant extinction 

𝐶𝑠𝑐𝑎𝑡 is given by: 

𝐶𝑠𝑐𝑎𝑡 = 𝑅ρ × 𝑝(𝐿, 𝑉) ∫ 𝑇𝐿(𝑧)𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧)Vis(𝑧)σ𝑡(𝑧)
𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

 𝑑𝑧 (7) 

Equation 7 

To approximate 𝑇𝐿(𝑧), we assume that 𝜏𝐿(𝑧) varies linearly between 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥. 

Let τ𝑚𝑖𝑛 = τ𝐿(𝑧𝑚𝑖𝑛) and τ𝑚𝑎𝑥 = τ𝐿(𝑧𝑚𝑎𝑥).  

𝑇𝐿(𝑧) = 𝑒
(−τ𝑚𝑖𝑛− 

(τ𝑚𝑎𝑥−τ𝑚𝑖𝑛)(𝑧−𝑧𝑚𝑖𝑛)
𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛

)
(8) 

Equation 8 

As a first step, the extinction 𝜎𝑡(𝑧) was assumed to be constant throughout a 

tetrahedron, i.e. 𝜎𝑡(𝑧) = σ, ∀ 𝑧. τ(𝑧1, 𝑧2) then becomes σ(𝑧2 − 𝑧1). For simplicity, 

𝑉𝑖𝑠(𝑧) was assumed to be 1 everywhere. Equation 7 can then be integrated 

analytically:  

𝐶𝑠𝑐𝑎𝑡 = 𝑅 ρ × 𝑝(𝐿, 𝑉)  

×
σ(𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)(𝑒(σ𝑧𝑚𝑎𝑥+τ𝑚𝑎𝑥) − 𝑒(σ𝑧𝑚𝑖𝑛+τ𝑚𝑖𝑛))𝑒(−σ𝑧𝑚𝑎𝑥−τ𝑚𝑎𝑥−τ𝑚𝑖𝑛)

σ𝑧𝑚𝑎𝑥 − σ𝑧𝑚𝑖𝑛 + τ𝑚𝑎𝑥 − τ𝑚𝑖𝑛
 

Also: 

 

𝐴 = 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) = 𝑒−σ(𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛) 

 

 

Figure 8: The results of the analytical shading method with constant extinction 
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Since Equation 7 and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) can be integrated analytically, they were trivial 

to compute and output in the interval shader. The resulting visuals resembles a cloud 

of smoke, especially with the volumetric shadows. However, the constant extinction 

value causes the entire tetrahedron to be filled with participating medium, resulting in 

the tetrahedron edges being visible. These sharp geometric edges are not visible in 

real smoke or clouds. 

 

 

 

Figure 9: Constant extinction within a tetrahedron causes edges to be visible 

3.8 Hiding of tetrahedron edges 

To hide the tetrahedron edges, the extinction 𝜎𝑡(𝑧) is faded exponentially with 

distance from the tetrahedron centre. 
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Figure 10: Extinction fading 

Consider the tetrahedron shown in Figure 10. The pixel along the view ray 𝑉 is 

currently being shaded. The points of entry and exit are labelled 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 

respectively. The vector from 𝑧𝑚𝑖𝑛 to the centre has a length 𝑑 and angle α with 𝑉. 

Using the law of cosines, the distance 𝑙(𝑧) from any point 𝑧 along 𝑉 to the centre is 

given by: 

𝑙(𝑧) = √−2 𝑑(𝑧 − 𝑧𝑚𝑖𝑛) cos(α) + 𝑑2 + (𝑧 − 𝑧𝑚𝑖𝑛)2 

Using this, we can fade the extinction exponentially: 

σ𝑡(𝑙(𝑧)) = 𝑒
−50𝑙(𝑧)2

𝑢2  

𝑢 is a parameter that can be used to control the extinction falloff distance. Finally, 

σ𝑡(𝑧) is therefore: 

σ𝑡(𝑧) = σ𝑒
(

50 (2 𝑑(𝑧−𝑧𝑚𝑖𝑛) cos(α)−𝑑2−(𝑧−𝑧𝑚𝑖𝑛)2)

𝑢2 )
(9)

 

Equation 9 

3.9 Integrating 𝑪𝒔𝒄𝒂𝒕 using a Taylor series expansion 

𝐶𝑠𝑐𝑎𝑡 and 𝐴 must be computed again using the faded extinction function. From 

Equation 9 and Equation 2, we have: 
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𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧) = 𝑒
(−

1
20

 √2√πσ𝑢(𝑒𝑟𝑓(
5 √2𝑑 cos(α)

𝑢
)−𝑒𝑟𝑓(

5 √2(𝑑 cos(α)−𝑧+𝑧𝑚𝑖𝑛)
𝑢

))𝑒
(

50 𝑑2 cos2(α)

𝑢2 −
50 𝑑2

𝑢2 )
)

(10)
 

Equation 10 

HLSL does not provide an intrinsic function to compute 𝑒𝑟𝑓. Tokuyoshi’s 𝑒𝑟𝑓 code 

(Tokuyoshi, 2022) was used instead. 

 

It is impractical to analytically integrate Equation 7 when using the faded extinction 

function. An approximation using the Taylor series expansion was attempted instead.  

The Taylor series expansion of a function 𝑓(𝑥) at a real or complex number 𝑎 is 

given by: 

 

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ = ∑

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 

Integrating this, we have: 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝑎)(𝑥 − 𝑎) +
𝑓′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯

= ∑
𝑓(𝑛)(𝑎)

(𝑛 + 1)!
(𝑥 − 𝑎)𝑛+1

∞

n=0

 

To maximise accuracy, the expansion point 𝑎 was chosen to be 
𝑧𝑚𝑖𝑛+𝑧𝑚𝑎𝑥

2
. The 𝑛-th 

order derivative 𝑓(𝑛)(𝑎) was computed numerically using the finite forward 

difference. The first four terms of the series above were computed and used to 

approximate the integral in (7). However, this approach did not result in a visually 

accurate appearance. Many geometric edges are still visible, and the image contains 

objectionable firefly artefacts. Owing to these shortcomings, this approach was not 

explored further. 
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Figure 11: Taylor series integration results in firefly artefacts 

3.10 Integrating 𝑪𝒔𝒄𝒂𝒕 using Simpson’s rule 

Since the Taylor series integration method proved to be inaccurate, an alternative 

numerical integration approach using Simpson’s rule was explored. Simpson’s rule is 

as follows: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈
𝑏 − 𝑎

6
(𝑓(𝑎) + 4𝑓 (

𝑎 + 𝑏

2
) + 𝑓(𝑏)) 

 

The accuracy of this method can be improved by dividing the interval [𝑎, 𝑏] into 𝑛 

steps or sub-intervals, applying Simpson’s rule to each interval in turn and then 

summing the results. As 𝑛 increases, the error diminishes. Since a high step count 

incurs a performance cost, the step count 𝑛 was made configurable in the artefact. 

By default, only a single step spanning the entire interval [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥] is used. 

 

To apply Simpson’s rule to Equation (7), 𝑇𝐿(𝑧) and 𝑇𝑉(𝑧𝑚𝑖𝑛, 𝑧) are computed using 

Equation 8 and Equation 10 respectively. Vis(𝑧) must be sampled from a shadow 

map, and σ𝑡(𝑧) is computed using Equation 9.  
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Figure 12: The Simpson’s rule method avoids objectionable artefacts 

As shown above, the Simpson’s rule method produces plausible results. There are 

subtle artefacts detailed in 4.1, but these do not detract from the overall appearance 

of the medium. 

3.11 Early return for invisible pixels 

 

Figure 13: Wasted pixels visualised for a single particle with u=1.6. Visible pixels are shaded in green, while 
pixels with extinction below the cutoff are shaded red 

When the faded extinction from Equation 9 is applied, the optical thickness at many 

pixels covered by a tetrahedron becomes so low as to be invisible. However, the 

pixel shader is still invoked for these pixels, resulting in unnecessary work done. 
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These “wasted pixels” are visualised above in red. To mitigate this performance loss, 

the optical thickness is set to 0 if τ𝑉(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥) is found to be less than some small 

threshold ϵ. This results in significant performance gains and is documented in 4.2.6. 

3.12 Multiple scattering approximation 

The model presented thus far only accounts for single scattering. To approximate 

multiple scattering, a term 𝐶𝑚𝑢𝑙 is computed as follows: 

𝐶𝑚𝑢𝑙 =
σ𝑡 (

𝑧𝑚𝑖𝑛 + 𝑧𝑚𝑎𝑥

2 )

σ
× ρ 𝑅 𝑝(𝐿, 𝑉) × 0.001 × 𝑚 (11) 

Equation 11 

Here, 𝑚 ∈ [0,1] is a parameter to control the intensity of the multiple scattering term. 

Though this term is crude and not physically based, it improves the visual fidelity as 

explained in 4.1.3. 

3.13 Volumetric shadows on opaque objects 

The volumetric shadow map can also be sampled to cast shadows onto opaque 

objects. This process is similar to sampling a conventional shadow map. The 

algorithm for volumetric shadowing is as follows: 

1. In the pixel shader, convert the world space coordinates of the pixel being 

shaded into shadow map space. 

2. Sample the optical thickness τ from the volumetric shadow map. 

3. Compute the transmittance 𝑇 = 𝑒−τ. 

4. Use the transmittance 𝑇 as the shadow factor when computing lighting.  

3.14 Animation of the medium 

To demonstrate that the rendering method is without artefacts even in motion, a 

simple particle simulation was implemented. Each particle is assigned a target 

position within a cube. The entire cube can be moved, and particles will accelerate 

towards their target positions over time with their velocities damped by viscosity. 

Additionally, the user can press the left mouse button to apply an impulse to any 

particles that are close to the mouse cursor. The simulation logic was kept 

deliberately simple to allow for focus on the rendering method. 
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3.15 Occlusion of the medium 

Since the interval shading technique works by splatting triangle proxies onto the near 

plane, the tetrahedron particles are not occluded by the preceding contents of the 

depth buffer. To overcome this limitation, the pixel shader computes and writes a 

depth to the depth buffer using DirectX’s SV_Depth semantic. The pixel depth is 

computed as the depth of the near point of the interval. 

3.16 Parameterisation 

 

Figure 14: Available parameters 

The project has many parameters, as shown above in Figure 14. The main 

parameters concerning the rendering method can be found under the Material 

section. Some of these parameters are adjusted slightly for user-friendliness, but 

they all map to variables used by this method as explained below: 
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1. The Particle Count slider controls the number of particles. It ranges from 1 to 

65,535. 

2. The Scale slider adjusts the size of each particle. A scale of 1 means that the 

distance from any vertex to the centre of a tetrahedron is 1m. 

3. The Albedo is the colour of the medium, mapping directly to ρ in the rendering 

equation. 

4. The Extinction parameter varies from 0 to 100 and maps to σ, adjusted slightly 

for user-friendliness. In addition, each particle has a randomized extinction 

multiplier in the range [5,10]. σ is calculated as: 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 ×

𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 0.0001.  

5. The Extinction Falloff ranges from 0 to 10 and controls the falloff parameter 𝑢 

in Equation (8), which is computed using 𝑢 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑐𝑎𝑙𝑒 × 𝑓𝑎𝑙𝑙𝑜𝑓𝑓.  

6. The Scattering Anisotropy controls the parameter 𝑎 from 3.3. 

7. The Scattering Asymmetry controls the parameter 𝑔 from 3.3. 

8. The Multi-Scattering Factor is the multiple scattering parameter 𝑚 in Equation 

11. 

9. The Rendering Method dropdown can be used to toggle the rendering method 

between Simpson’s rule (3.10), the Taylor series integration (3.9) or the 

analytical solution without faded extinction (3.7). There is also an option to 

visualise wasted pixels. 

10. The Step Count slider ranges from 1 to 10 and controls the number of 

Simpson’s rule steps taken, if the Simpson’s rule rendering method is 

selected. 

11. The Soft Shadows checkbox can be used to toggle the use of large kernel 

PCF when sampling 𝑉𝑖𝑠(𝑧). 

In addition to these, controls to modify the light (whose irradiance is mapped to 𝑅), 

move the medium, pause the particle simulation or move the props can be found in 

the other UI sections. 

3.17 Testing and validation 

To assess whether the method can effectively render participating media, a 

qualitative analysis of the following desired characteristics was conducted: 

1. Scattering of light towards the camera 

2. Self-shadowing of the medium 
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3. Volumetric shadows cast by opaque objects into the medium 

4. Volumetric shadows cast by the medium onto opaque objects 

5. Anisotropic scattering of light 

6. Visual fidelity under motion 

To assess the performance characteristics of the method, the frame time in 

milliseconds was measured and plotted as the following parameters were varied: 

1. Simpson’s rule steps 

2. Particle count 

3. Camera distance 

4. Particle size 

5. Large kernel PCF (on vs off) 

6. Extinction fading 

7. Volumetric shadow map depth slices 

8. Volumetric shadow map resolution 

  



 

37 

4 Results 

4.1 Qualitative analysis of the visuals 

4.1.1 Scattering of light towards the camera 

Light scattering in participating media make illumination visible even in pixels where 

there are no visible surfaces to reflect it (Pharr, Jakob and Humphreys, 2023). This 

scattering phenomenon is observable in the artefact, and the scattered light colour is 

affected both by the colour of the light and the albedo of the medium. 

 

 

Figure 15: The colour of the participating medium is affected by the colour of incident light 
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Figure 16: The colour of the participating medium is affected by its own albedo 

4.1.2 Self-shadowing of the medium 

Light is scattered or absorbed as it passes through the medium, resulting in some 

parts of the medium appearing darker than others. 

 

Figure 17: The medium shadows itself, resulting in the bottom right portion appearing dark 

4.1.3 Volumetric shadows cast by opaque objects 

When light passing through a participating medium is occluded, the occluded parts of 

the medium do not scatter light towards the camera, resulting in a volumetric shadow 

in the medium. These volumetric shadows are observable in the artefact as well.  
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Figure 18: The cube and the sphere both occlude light, casting volumetric shadows into the participating medium 

 

If the particles are large and few in number, aliasing artefacts can appear due to 

under-sampling of 𝑉𝑖𝑠(𝑧). These artefacts can be removed either by increasing the 

Simpson’s rule step count or by increasing the number of particles, as shown in 

Figure 19. 

 

Figure 19: Left: 100 particles, size 6, 1 step. Centre: 100 particles, size 6, 10 steps. Right: 5000 particles, size 6, 
1 step 

 

When viewing a volumetric shadow head-on, it can sometimes look like a hole 

through the medium, as shown in Figure 20. 
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Figure 20: Left: A shadow cast onto a high extinction medium. Centre: When a shadow is cast onto a low 
extinction medium, it looks like a hole. Right: Hole-like shadows viewed from the other side of the medium 

This phenomenon occurs because no light is scattered towards the eye from within 

the shadow, making the space appear empty. Multiple scattering is required to 

alleviate this effect, as shown in Figure 21. 

 

Figure 21: Multiple scattering (right) can improve volumetric shadows 

4.1.4 Volumetric shadows cast onto opaque objects 

Light is attenuated as it passes through the participating medium, resulting in 

shadows cast onto other objects (Pharr, Jakob and Humphreys, 2023). 
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Figure 22: The participating medium casts a shadow onto the ground 

Participating media in the artifact do indeed cast shadows onto the ground. However, 

these shadows do not take on the colour of the medium and are greyscale instead.  

 

Figure 23: The shadow does not take on the colour of the medium 
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4.1.5 Anisotropic scattering of light 

 

Figure 24: The rendered medium viewed while looking towards the light, orthogonal to the light and away from 
the light 

In many naturally occurring media, the scattering of light is dependent on the angle 

between the incident and outgoing direction. In the artefact, the rendered medium 

looks different when viewed from different angles, and this anisotropy is 

configurable.  

4.1.6 Maintenance of visual fidelity under motion 

All of the above properties are observable in this artefact even when the particles, 

light, camera or all three are in motion, appearing correctly without the presence of 

any visual glitches or artefacts. 

4.2 Quality settings and performance 

These performance metrics were captured on a NVIDIA GeForce RTX 4070 Mobile 

graphics card. 
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4.2.1 Simpson’s rule steps 

 

Figure 25: 500 particles rendered with 1, 2, 3, 8, 9, and 10 Simpson's rule steps 

 
Figure 26: Frame time vs step count for different particle counts 

The frame time increases linearly with the Simpson’s rule step count, with a higher 

slope for a larger number of particles. As shown in Figure 25, there is a dramatic 

visual difference between one step and two steps. Further increases to the step 

count only offer marginal improvements in visual quality, with the changes being 

most visible in the volumetric shadows. 
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Figure 27: A single particle with u=1 with 1, 2 and 3 Simpson's rule steps. A lower step count results in artefacts 
due to under-sampling of the extinction 

Under-sampling of the extinction function σ𝑡(𝑧) can result in the tetrahedron edges 

being visible. Figure 27 shows that increasing the Simpson’s rule steps causes the 

rendered image to converge towards the expected result. 

4.2.2 Screen resolution 

Most of the computation involved in rendering the medium is done in the pixel 

shader. Therefore, the frame time increases as the screen resolution increases, 

since there are more pixels to be shaded. 

Resolution Frame Time 

800 x 600 1.60 ms 

1920 x 1080 3.80 ms 

2560 x 1600 7.87 ms 

Table 1: Frame time at different resolutions 

4.2.3 Particle count and camera distance 

 

 

Figure 28: Particles rendered at 20m, 40m and 60m 

 

Figure 29 shows that the frame time increases linearly with the number of particles 

rendered, with a greater slope depending on the camera distance. 
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Since the method is pixel shader bound, the frame time also increases as the 

particles take up more space on the screen. This can be simulated by moving the 

camera closer to the medium.  

 

 

Figure 29: Frame time vs particle count at different distances 
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4.2.4 Particle size 

 

Figure 30: Frame time vs particle size 

Increasing particle size also leads to an increase in frame time, since larger particles 

result in more pixels covered on the screen. From Figure 30, we observe that the 

frame time increases roughly exponentially with particle size. Note that sizes over 15 

did not result in a drop in performance, since at this point the particles intersected 

with the near plane and were culled as a result. 

 

4.2.5 Large kernel PCF 

When sampling the opaque shadow map, the artefact provides the option to use 

large kernel PCF (Reeves, Salesin and Cook, 1987). HLSL’s SampleCmp function 

was used to implement this with a 5x5 grid pattern.  

The performance without large kernel PCF in the default configuration is 3.24 

ms/frame and increases to 7.63 ms/frame with large kernel PCF. Furthermore, this 

scales with both particle count and step count. 



 

47 

 

Figure 31: With and without large kernel PCF 

Figure 31 shows the medium rendered with and without large kernel PCF. We 

observe some softening of the volumetric shadows. However, better softening can 

be achieved at a lower cost simply by increasing the step count. Therefore, we do 

not recommend the use of large kernel PCF with this method. 

4.2.6 Extinction fading 

 

Figure 32: The medium with two Simpson's rule steps and fading factor 1.6, 3 and 10 

The extinction falloff is exposed in the UI as an artist-friendly parameter 𝑓 that 

ranges from 0 to 10. The actual extinction falloff is computed using 𝑢 =

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑐𝑎𝑙𝑒 × 𝑓.  
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Figure 33: Frame time vs falloff parameter f 

From Figure 33, we observe that the falloff parameter does indeed improve 

performance as it decreases and begins to take effect around the value 6. Through 

empirical testing, the value 𝑓 = 1.6 was found to eliminate the hard edges for lower 

extinction values while still making use of as many of the tetrahedron pixels as 

possible (see figure 32). As the extinction increases, lower values such as 𝑓 = 1.2 

are needed in conjunction with a larger step count to eliminate edge artefacts. 

 

4.2.7 Shadow map depth slices 

To better illustrate minute details in the shadows, these tests were performed with 

5000 particles of size 4 with an extinction of 50 and a step count of 3. 
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Figure 34: From top, left to right: The medium with 2, 5, 10, 20, 50 and 100 shadow slices 

We observe that the appearance and visualisation change visibly as the slices are 

increased to 20, but further slices do not produce an appreciable difference. 

Furthermore, the appearances of the medium with 10 and 20 slices are almost 

identical, although the visualisation has some differences. 
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Figure 35: From top, left to right: The volumetric shadows visualised with 2, 5, 10, 20, 50 and 100 shadow slices 

 
Figure 36: Frame time vs shadow map depth slices 

We observe in Figure 36 that the frame time barely increases with the depth slice 

count. We conclude that a slice count between 10-20 is likely to be optimal for most 

scenarios.  
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4.2.8 Shadow map resolution 

 

Figure 37: The medium and the volumetric shadow map visualised at various resolutions. From left to right: 

32x32, 256x256, 1024x1024 

These metrics were captured with 5000 particles of size 4 with an extinction of 15 

and a step count of 3. In Figure 37, we observe that there is a significant visual 

difference between a volumetric shadow map with width 32 vs width 256, but 

increasing the resolution further does not result in any appreciable changes. 

Furthermore, volumetric shadow maps with widths lower than 256 result in banding 

artifacts when the particles are in motion. From Figure 38, we observe that the frame 

time grows very gradually as the resolution is increased. We conclude that a 

volumetric shadow map resolution of 256x256 achieves good visual fidelity while 

minimising frame time and avoiding any aliasing artifacts in motion. 
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Figure 38: Frame time vs volumetric shadow map width 

  



 

53 

5 Discussion 

5.1 Visual Fidelity 

As determined by the qualitative analysis, the method produces plausible visuals, 

particularly with higher quality settings. Notably, it maintains this fidelity even when 

the particles, lights or camera are in motion. The lighting model is lacking an 

emissive component, though this would be trivial to add. Nevertheless, the method is 

already able to model a variety of participating media such as fog, clouds and 

smoke. 

 

Figure 39: A variety of different media 

The visuals are currently somewhat limited by the simplicity of the phase function 

used. A relatively straightforward enhancement would be to support more complex 

functions, perhaps implemented as weighted combinations of multiple Henyey-

Greenstein lobes. (Gkioulekas et al., 2013) showed that sums of Henyey-Greenstein 

and von Mises-Fisher lobes can accurately represent scattering in many materials. 

 

Though this was not tested, one theoretical limitation of this method is its inability to 

interact correctly with other translucent objects. Translucent objects must be 

rendered in the correct order, but since the particles themselves are translucent, the 

objects themselves must be sorted together with the particles. For applications 

where it might be rare for translucent objects to be rendered within the particle 
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system, the bounding box of the particle system could perhaps be used for coarse-

grained sorting with the other translucent objects instead.  

 

Another potential limitation is the lack of coloured shadows. However, the greyscale 

shadow still contributes a lot to the plausibility of the visuals, and if the particles 

themselves are not coloured, then this method will of course be sufficient. 

 

5.2 Performance 

The performance of this method is bottlenecked by the pixel shader, which is 

invoked once per pixel per particle. We observe that the frame time increases 

linearly with particle count. One might therefore propose to render a small number of 

particles to improve performance. However, the particle size may have to be 

increased as a result to prevent the medium from looking excessively thin. This of 

course has a negative effect on performance since more pixels are being shaded. 

Tuning the performance of this method therefore involves carefully increasing the 

particle size while decreasing the count, or vice versa.  

 

Providing a single representative performance figure is difficult since the frame time 

depends on the view, the resolution and many configuration settings. The 

configuration in Figure 40 may provide some guidance. Here, there are 500 particles 

of size 6 each with a falloff factor 𝑓 = 1.6, rendered with 2 Simpson’s rule steps. In 

the view below, the frame time hovers between 3.6 – 4.0 milliseconds per frame at a 

resolution of 1920x1080. When the camera was positioned to fill the entire frame 

with the medium, the frame time was found to not exceed 12.20 milliseconds per 

frame. 

 

Figure 40: A "typical" configuration and its worst case performance scenario 
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6 Conclusion and Future Work 

6.1 Conclusion 

The aim of this project was to assess whether the interval shading technique could 

be used for volumetric rendering of animated participating media in real-time 

applications. As demonstrated from the results, it can be argued that the method 

presented in this dissertation was successful, especially in terms of visual fidelity. 

The rendered medium satisfied the qualitative characteristics outlined in 3.17 with 

few exceptions. The maintenance of fidelity under motion of the medium or light 

source is a significant strength of this method and addresses the limitations of state-

of-the-art froxel-based methods. The method is already quite performant, and there 

is scope for further improvements to be made. The most prominent limitation of this 

method is its incompatibility with other translucent objects. However, this can be 

worked around to some extent using coarse-grained sorting with bounding boxes.  

6.2 Future Work 

Given the performance characteristics presented in 5.2, this method can be used to 

render participating media in some real-time applications using commodity hardware. 

However, improved performance would broaden the feasibility of this method, 

particularly for performance-sensitive applications.  

 

One major inefficiency is the wastage of pixels, as described in 3.11. This method 

mitigates this through an early return, but further performance gains could be found 

through making more efficient use of the pixels to begin with. To estimate the 

potential performance gain, consider the scenario in Figure 41.

 

Figure 41: Left: The default configuration vs Right: No extinction fading and size reduction to take up 
approximately the same volume 
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On the left, the medium is configured typically as described in 5.2. On the right, the 

falloff factor 𝑓 was set to a very high value of 10, effectively disabling the extinction 

falloff. This resulted in the medium taking up a much larger volume than the original 

configuration, since the empty space in the tetrahedrons had now been filled. The 

tetrahedrons were then reduced in size until they appeared to take up approximately 

the same space as before, resulting in the image on the right. The image on the right 

therefore approximates the performance characteristics in the scenario where few or 

no pixels are wasted. The frame time was found to be 1.50ms, which is considerably 

lower than the 3.6ms frame time for the typical scenario. This suggests that there are 

large performance gains to be found by reducing pixel wastage. 

 

One way to reduce pixel wastage would be to replace the tetrahedron shape with 

some proxy geometry that better approximates a spherical shape, such as a square 

or hexagonal billboard or even a spherical mesh. This would preclude the use of the 

interval shading technique. However, a shading interval could still be computed in 

the pixel shader by performing a ray-sphere intersection with a sphere centred at the 

particle centre. The intersection test may incur some cost, but this would likely be 

offset by the performance gain from more efficient pixel usage. This method would 

also allow for early-Z culling to work. Since it doesn’t require the use of mesh 

shaders, this method is compatible with older hardware.  

 

However, the interval shading technique has applicability beyond particle systems. 

As demonstrated by Tricard himself (Tricard, 2024), tetrahedrons can be arranged to 

form meshes, which can then be rendered using interval shading. The lighting 

method presented in this project could be used to perform physically based 

participating media rendering of such tetrahedral meshes. Care must be taken to 

ensure that the tetrahedrons are of similar sizes and shapes to avoid sorting issues.  

 

If the spherical proxy geometry approach is not used, occlusion culling using a 

hierarchical Z-buffer (Greene, Kass and Miller, 1993) can be performed in the mesh 

shader to avoid drawing particles that are completely occluded. 

 

Another way to reduce the heavy pixel shader cost would be to render the particle 

system to a lower resolution render target, then composite this onto the final render 
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target. This also offers the opportunity to blur the render target to hide any lingering 

tetrahedron edges and remove high-frequency details. 

 

There is scope for future work to find a solution to rendering coloured volumetric 

shadows. One possible solution could be to accumulate the output radiance 𝐶𝑜 along 

the light direction into another 3D texture. This colour could be sampled and used as 

irradiance when rendering opaque objects. 

 

The current method only supports directional lights and would benefit from extension 

to support point lights and spotlights. In these cases, both the radiance of the light 𝑅 

and the light vector 𝐿 are spatially varying rather than constant. Thus, 𝑅 becomes 

𝑅(𝑧), 𝐿 becomes 𝐿(𝑧) and the phase function becomes 𝑝(𝐿(𝑧), 𝑉). The terms 𝑅(𝑧) 

and 𝑝(𝐿(𝑧), 𝑉) would have to remain inside the integral in Equation 6. These 

functions would then need to be sampled when solving the integral using Simpson’s 

rule. 

 

The current multiple scattering approximation is not physically based. A more 

physically based multiple scattering approach could enhance the visual fidelity of this 

method. Real-time multiple scattering remains a difficult problem in computer 

graphics, with the most recent work being (Billeter, Sintorn and Assarsson, 2012).  

 

Mixing these particles with other translucent objects also presents a challenging 

topic for future research. Indeed, a notable advantage of (Hillaire, 2015) are its 

unified capabilities and its ability to render participating media from various sources 

together with translucent objects in a scene. Incorporating the ISV method into a 

unified solution would greatly increase its applicability. 
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